

KLIMAFIT 2

ZWEITER PUBLIZIERBARER ZWISCHENBERICHT ZUM FORSCHUNGSPROJEKT NUMMER 2022-0.513.686

IMPRESSUM

Projektnehmer: SAATGUT AUSTRIA - Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreich

Adresse: Wiener Straße 64, 3100 St. Pölten Projektleiter: DI Dr. Anton Brandstetter

Tel.: +43 (0) 50 2592 2121

E-Mail: of fice@saatgut-austria.at; anton.brandstetter@lk-noe.at

Projektmitarbeiter: DI Dr. Philipp von Gehren, Svenja Bomers MSc, DI Clemens Flamm, DI Hans Felder, DI Klemens Mechtler, DI Michael Schwarz, Österreichische Agentur für Gesundheit und Ernährungssicherheit AGES GmbH, Spargelfeldstraße 191, 1220 Wien

Tel.: +43 (0) 50 555 33134

E-Mail: philipp.von-gehren@ages.at

Kooperationspartner: DI Johann Birschitzky, Saatzucht Donau GesmbH. & CoKG, Saatzuchtstrasse 11, 2301 Probstdorf; Mag. Richard Wieser, Saatzucht Gleisdorf GesmbH, Am Tieberhof 33, 8200 Gleisdorf; Astrid Riedweg, RWA Raiffeisen Ware Austria AG, Wienerbergstraße 3, 1100 Wien; Dr. Christian Gladysz, Saatbau Linz eGen, Schirmerstraße 19, 4060 Leonding; Ing. Marco Göttfried, Probstdorfer Saatzucht GesmbH & CoKG, Parkring 12, 1010 Wien; DI Susanne Kirchmaier, Niederösterreichische Saatbaugenossenschaft, Meires 25, 3841 Windigsteig; Josef Tomasich, Corteva Agriscience Austria GmbH, Pioneerstraße 1, 7111 Parndorf

Co-Autorenschaft Genotyp x Umwelt Interaktionsversuch: Dr. Christian Ametz, Saatzucht Donau GesmbH. & CoKG, Saatzuchtstrasse 11, 2301 Probstdorf Finanzierungsstellen: Bundesministerium für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft (BML); Länder Wien, Niederösterreich, Oberösterreich, Burgenland, Steiermark, Salzburg, Kärnten, Tirol und Vorarlberg

Projektlaufzeit: 01.01.2021-31.12.2023

1. Auflage

MITEINANDER ZU SORTEN MIT VERBESSERTER ÖKO-STABILITÄT ZUR ANPASSUNG AN DEN KLIMAWANDEL (AKRONYM: KLIMAFIT 2).

Das gemeinsame und zentrale Ziel ist es, klimafitte Sorten für Österreich unter besonderer Berücksichtigung von Trockenheitsund Hitzetoleranz zu entwickeln, diese an den voranschreitenden Klimawandel sowie an regionale Erfordernisse anzupassen und die Kulturartenvielfalt im Sinne einer nachhaltigen Bewirtschaftung sicher zu stellen.

INHALTSVERZEICHNIS

1	EINLEITUNG	6
	1.1 AUSGANGSLAGE & PROBLEMSTELLUNG	6
	1.2 PROJEKTZIEL	
	1.3 KURZE DARSTELLUNG DER BISHERIGEN PROJEKTINHALTE	
	TIS ROLLE BING TELEBOTO BERCHISTIERIOER TROVERSTITATI ETE	12
2	MATERIAL & METHODIK	13
	2.1 VERSUCHSSTANDORTE	
	2.2 STANDORTBEWERTUNG HINSICHTLICH TROCKENSTRESS	
	2.3 VERSUCHSAUFBAU	
	2.4 VORSELEKTION VON GENOTYPEN	
	2.5 BONITUREN DER PARZELLENVERSUCHE & QUALITÄTSANALYSEN	
	2.5.1 Getreide	
	2.5.2 ÖL- UND EIWEIßPFLANZEN	
	2.5.3 KARTOFFEL	
	2.6 VORVERSUCH ZUR ADAPTION DER BESCHREIBENDEN SORTENLISTE	
	2.7 GENOTYP X UMWELT INTERAKTIONSVERSUCH	
	2.7.1 VERSUCHSAUFBAU	
	2.7.2 DATENAUSWERTUNG	
	2.8 STATISTISCHE AUSWERTUNG	39
3	ERGEBNISSE	41
3		
	3.1 GETREIDE & MAIS	
	3.1.1 Weizen	42
	3.1.2 Gerste	
	3.1.3 Sommerhafer	74
	3.1.4 WINTERTRITICALE	
	3.1.5 WINTERROGGEN	
	3.1.6 RISPENHIRSE	
	3.1.7 SORGHUM	
	3.1.8 MAIS	
	3.2 ÖL- UND EIWEIßPFLANZEN	
	3.2.1 SOJABOHNE	
	3.2.2 RAPS	
	3.2.3 SONNENBLUME	
	3.2.4 ÖLKÜRBIS	
	3.2.5 ACKERBOHNE	
	3.2.6 KÖRNERERBSE	
	3.2.7 Weiße Lupine	
	3.2.8 KÄFER- UND GARTENBOHNE	
	3.3 KARTOFFEL	
	3.3.1 KARTOFFEL IM KONVENTIONELLEN ANBAU	
	3.3.2 KARTOFFEL IM BIOLANDBAU	
	3.4 VORVERSUCH ZUR ADAPTION DER BESCHREIBENDEN SORTENLISTE	
	3.5 GENOTYP X UMWELT INTERAKTIONSVERSUCH	
	3.5.1 ERGEBNISSE UND INTERPRETATION	198
	EDDELOUME ED GEDNIGGE DA GWEIMEN DD OVENSY AVE	202
4	ERREICHTE ERGEBNISSE IM ZWEITEN PROJEKTJAHR	203
_	LITERATUR	215
)	LITERATUR	213
6	TABELLENVERZEICHNIS	216
U	TADLELLA VERLERING	410

INHALTSVERZEICHNIS

7	ABBILDUNGSVERZEICHNIS	220
8	ANHANG	223

1 EINLEITUNG

1.1 AUSGANGSLAGE & PROBLEMSTELLUNG

Die Auswirkungen des vom Menschen verursachten Klimawandels waren global, national und regional in den letzten Jahren verstärkt zu beobachten und äußerten sich durch die Zunahme verschiedenster extremer Wetterphänomenen wie Hitzewellen, Dürren, Überflutungen, Waldbrände und Starkniederschlagsereignisse (UNDRR, 2020, WMO, 2021). Neben konsequentem Klimaschutz (Mitigation) sind auch vollumfängliche Anpassungsstrategien (Adaption) zu verfolgen, um die Klimaresilienz bestehender Systeme zu erhöhen und die Risiken abzufedern (IPCC, 2022).

Die Auswirkungen des Klimawandels auf die zukünftigen klimatischen Bedingungen in Österreich sind komplex. Prognosen erwarten, neben der Erhöhung der Durchschnittstemperatur, einen leicht sinkenden, jährlichen Niederschlag – vor allem im ackerbaulich relevanten Flachland im Osten. Zu berücksichtigen ist hier vor allem eine Verschiebung des Niederschlagsmusters. Weniger Niederschlag gekoppelt mit längeren Hitze- und Trockenperioden in den Sommermonaten steht ein leichtes Plus an Niederschlag in den Wintermonaten gegenüber. Zudem dürfte die Intensität von Starkniederschlägen zunehmen (Formayer et al., 2009). Vor allem die ackerbaulich relevanten Gegenden im östlichen Flachland Österreichs werden sich in Zukunft auf länger anhaltende Dürreperioden einstellen müssen, welche sich negativ auf den Ertrag und die Ertragsleistung der Böden auswirken (Strauss et al., 2013, Haslmayr et al., 2018). Aber auch die mit dem Klimawandel einhergehende untypische Niederschlagsverteilung, sowie sich ein veränderndes Spektrum an Pflanzenkrankheiten und vermehrt auftretende Pflanzenschädlinge – bedingt durch die milderen Winter – werden den Ackerbau in Österreich in Zukunft erschweren.

Basierend auf der prognostizierten klimatischen Entwicklung sind zukünftig in Österreich Anbaubedingungen zu erwarten, bei denen sich länger anhaltende Hitze- und Trockenperioden negativ auf die Ertragsleistung von etablierten Sorten auswirken werden. Gezielte Züchtungsarbeit, damit die Landwirtschaft auch in Zukunft wettbewerbsfähig bleibt und die Ernährungssicherung gewährleistet, muss berücksichtigen, dass verschiedene Kulturartengruppen unterschiedlich auf die veränderten Bedingungen reagieren werden.

Bei **Getreide** resultiert auftretender Hitzestress, insbesondere während der reproduktiven Phase und während der Kornfüllung, in einen deutlichen Ertragsverlust. Insgesamt ist ein Rückgang der weltweiten Weizen- und Gerstenerträge aufgrund sich ändernder klimatischer Bedingungen zu erwarten (Barnabás et al., 2007, Farooq et al., 2011, Talukder et al., 2014, Akter and Rafiqul Islam, 2017). In Österreich bewirkt das sich verändernde Klima in den letzten Jahren eine festzustellende Verschiebung der Anbauflächen, es werden vermehrt Wintergetreide angebaut, welche die Winterfeuchtigkeit besser nutzen können und von der deutlich längeren Vegetationszeit profitieren. So hat z. B. bei Sommergerste die schwere Frühjahrstrockenheit in den letzten Jahren zu einem starken und kontinuierlichen Rückgang der Anbauflächen geführt, ihre Anbaufläche lag 2022 mit insgesamt 25.614 Hektar um zwei Drittel unter der Anbaufläche vor zehn Jahren (AMA, 2022). Eine züchterische Verbesserung der Qualitäten – insbesondere des Proteingehalts – von Wintergerste könnte den Ausfall der Sommergerste-Erträge für das Brauereigewerbe kompensieren. Auch bei Getreiden mit bisher äußerst geringer Züchtungsintensität, wie z. B. Rispenhirse, wird eine züchterische Verbesserung hinsichtlich der Ertragsleistung im Trockengebiet, der Standfestigkeit und der gleichmäßigen Abreife bei verstärkten Wetterextremen angestrebt, um die Wirtschaftlichkeit für den Anbauer als auch für den verarbeitenden Bereich (z. B. Goldhirse als Grundstoff für glutenfreie Ernährung) zu verbessern.

Hitzestress ist beim Anbau von **Leguminosen** ein entscheidender limitierender Faktor und führt zu einer deutlichen Abnahme von Ertrag und Qualität des Erntegutes. Die Pflanzen reagieren auf erhöhte Temperaturen mit dem Abwerfen von Blüten und Hülsenansätzen sowie Pollensterilität (Rainey and Griffiths, 2005, Vargas et al., 2021, Bomers et al., 2022). Die traditionell in Österreich angebauten Leguminosen Ackerbohne,

Körnererbse und die regional bedeutende Spezialität Käferbohne sind eher an kühle/moderate Temperaturen angepasst. Hier ist auftretender Hitzestress, welcher schon bei Temperaturen um die 30 °C bemerkbar ist, ein entscheidender limitierender Faktor. Aufgrund der prognostizierten steigenden Temperaturen ist langfristig mit niedrigeren Erträgen bei etablierten Sorten dieser Kulturarten zu rechnen. Eine züchterische Verbesserung von Kulturen mit bisher äußerst geringer Züchtungsintensität hinsichtlich gefragter Parameter wie z.B. Ertragsleistung im Trockengebiet, Standfestigkeit und gleichmäßiger Abreife ist wichtig, um die Wirtschaftlichkeit im Anbau wie auch im verarbeitenden Bereich zu verbessern.

Die an sich wärmeliebenden Kulturarten Mais und Sojabohne haben einen hohen Wasserbedarf und erreichen die höchsten Ertragswerte im feuchtwarmen Klima. Daher ist auch hier beim Eintreten zukünftiger Klimaprognosen durch anhaltender Sommertrockenheit mit Ertragsrückgängen unangepasster Sorten in Österreich zu rechnen. Dabei ist zu berücksichtigen, dass die Anbaufläche von Soja in Österreich, vor allem in den östlichen Regionen, seit Jahren kontinuierlich ansteigt. In 2022 wurden mit knapp 92.000 Hektar ein neuer Rekord aufgestellt, was zum Teil natürlich auch der Funktion dieser Kulturart als Stickstofffixierer zuzuschreiben ist. In Zeiten von hohen Energiepreisen und damit einhergehenden hohen Düngerpreisen ist Soja eine gern angebaute Kulturart. Das große Potential für eine intensive heimische Züchtungsarbeit sowie breite Versuchstätigkeit mit entsprechenden Ertragsfortschritten durch regional angepassten Sorten ist offensichtlich und dürfte die Wettbewerbsfähigkeit und Rentabilität des Sojaanbaus in Österreich weiter steigern. Dabei sind zwei Zielrichtungen hier in der Züchtung besonders wichtig: Zum einen liegt ein besonderes Augenmerk auf Hitze- und Trockenheitstoleranz, um die Ertragsstabilität der Sojabohne in den Ackerbauregionen Ost- und Südostösterreich zu verbessern. Zum anderen sollten Sorten selektiert werden, die über eine sehr gute Jugendentwicklung und Kühltoleranz verfügen, damit die Ausdehnung des Sojaanbaus in klimatisch weniger begünstigte Lagen ermöglicht werden kann, ähnlich wie es beim Mais durch intensive Züchtungsarbeit in den letzten Jahrzehnten bereits gelungen ist.

Die Kartoffel bevorzugt ein gemäßigtes Klima. Dadurch ist diese Kulturart besonders anfällig für Trockenheit und Hitze, welche sich negativ auf die Knollenentwicklung auswirken und mit hohem Ertragsverlust einhergehen. Eine Temperatur von über 25 °C führt dazu, dass die Pflanze die Knollenbildung einstellt und das vegetative Wachstum begünstigt, was zu weiteren Qualitätseinbußen bei den Knollen führt (Singh et al., 2020). Eine durchgeführte künstliche Beregnung könnte dieser Problematik oftmals entgegenwirken, jedoch ist diese in vielen Gebieten Österreichs nicht vorhanden bzw. nicht realisierbar. Auch muss man davon ausgehen, dass die Wasserversorgung in den bewässerten Gebieten aufgrund der fortschreitenden klimatischen Veränderungen knapper werden. Tatsache ist, dass die derzeitigen Kartoffelsorten bei hohen Temperaturen auch bei einer durchgeführten Bewässerung nicht den gewünschten Ertrag liefern. Für die Landwirtschaft braucht es daher tolerante Sorten, die mit weniger Wasser auskommen und die Knollenbildung und das Wachstum auch bei erhöhten Temperaturen nicht einstellen. Neue Sorten benötigen in wärmeren Regionen eine höhere Virusresistenz, insbesondere im Hinblick auf erfolgreiche Vermehrungen des Pflanzguts. Anderenfalls müssen Vermehrungsvorhaben im Trockengebiet aufgegeben werden, da in diesen Gebieten vermehrt tierische Schädlinge wie u.a. Blattläuse (Vektoren für Viruskrankheiten), Kartoffelkäfer, Drahtwürmer und Zikaden (Vektoren für Stolbur) auftreten.

Neben dem Schwerpunkt auf der Hitze- und Trockenheitsresistenz zeigt das Beispiel der Kartoffel, dass auch Resistenzeigenschaften gegenüber Schadorganismen an die sich ändernden Umweltbedingungen angepasst werden müssen. Milde Winter begünstigen das Auftreten von Vektoren, sodass durch höhere Temperaturen auch der Infektionsdruck ansteigen wird. Folglich sind bei neuen Sorten auch die Virusresistenzen zu verbessern. Der Klimawandel hat zudem einen großen Einfluss auf die geografische Verteilung von Schädlingen und Krankheitserregern und ihre Interaktionen mit Pflanzenwirten, einschließlich Veränderungen der Wirtsanfälligkeit (Elad and Pertot, 2014). Eine Kompensation über die Zulassung und Anwendung von Pflanzenschutzmitteln gestaltet sich zunehmend schwieriger. Eine zielgerichtete Züchtungsarbeit hinsichtlich neuer Resistenzeigenschaften könnte diese negativen Effekte abfedern und die konventionelle als auch die biologische Landwirtschaft mit neuen Sorten entlasten.

EINLEITUNG

Der Klimawandel stellt also eine existenzielle Bedrohung für die Ernährungssicherung in Österreich dar. Darüber hinaus sorgen eine stetige Bodenreduktion durch Verbau sowie gesellschaftspolitische Anforderungen dafür, dass der Pflanzenbau sich in einem Spannungsfeld befindet. Auch im Angesicht des Klimawandels soll die Landwirtschaft die Selbstversorgung mit Lebensmitteln sicherstellen, wofür aber immer weniger Fläche zur Verfügung steht. Die Nachfrage nach verbesserten, ertragreichen Sorten, welche als eine Stellschraube im System zur Ernährungssicherung beitragen können, ist also groß. Die Entwicklung von klimafitten Sorten mit hoher Trockenheits- und Hitzetoleranz, welche die regionale Kulturartenvielfalt in Österreich im Sinne einer nachhaltigen Bewirtschaftung sicherstellen, ist eine wichtige Maßnahme zur Anpassung an den Klimawandel. Eine klimafitte Sorte weist dabei eine hohe Öko-Stabilität auf, und kann auch unter den in den kommenden Jahren zu erwartenden extremen klimatischen Bedingungen die Erwartungen an Ertrag und Qualität erfüllen.

Dieses Ziel verfolgen die Kooperationsprojekte KLIMAFIT 1 (2018 – 2020) und KLIMAFIT 2 (2021 – 2023), in denen sich österreichische Züchtungsunternehmen unter der Projektleitung der Saatgut Austria und in Zusammenarbeit mit der AGES GmbH gemeinsam für die Entwicklung von klimafitten Sorten einsetzen. Der vorliegende zweite Zwischenbericht bildet die Tätigkeiten im zweiten KLIMAFIT 2 Projektjahr 2022 ab, welche zur Zielerreichung durchgeführt wurden.

Die diesem Zwischenbericht zugrundeliegende Vegetationsperiode zeigt deutlich die Notwendigkeit der Bereitstellung von verbesserten Pflanzensorten über das gesamte Kulturartenspektrum auf. Die von der ZAMG erhobene Klimabilanz musste auch für 2022 die schwerwiegenden Auswirkungen der fortschreitenden Erwärmung unseres Planeten feststellen. Das zurückliegende Jahr zählt zu den drei wärmsten Jahren der 256-jährigen österreichischen Messgeschichte. Das Flächenmittel der Lufttemperatur lag im Schnitt 1,2 °C über dem langjährigen Mittel 1991 bis 2020, wobei vor allem der Westen Österreichs mit stark überdurchschnittlichen Temperaturen zu kämpfen hatte (Abbildung 1). Zieht man als Vergleichsperiode das langjährige Mittel 1961-1990 heran, also eine Periode, welche noch nicht so stark von der Klimaerwärmung gezeichnet war, so zeigt sich sogar eine 2,4 °C höhere Lufttemperatur. Über ganz Österreich hinweg betrachtet stachen insbesondere die Monate Mai, Juni, Juli und August hervor, ebenso wie der Oktober. Aber auch die Wintermonate Januar und Februar waren ungewöhnlich warm, was sich auch in der Phänologie widerspiegelte. Die Vegetationsperiode startete früher als gewohnt – in vielen Regionen schon im Februar – und verlängerte sich noch weiter in den Herbst hinein, auch wenn ein kühlerer März die Entwicklung vieler Pflanzen zunächst wieder verlangsamte.

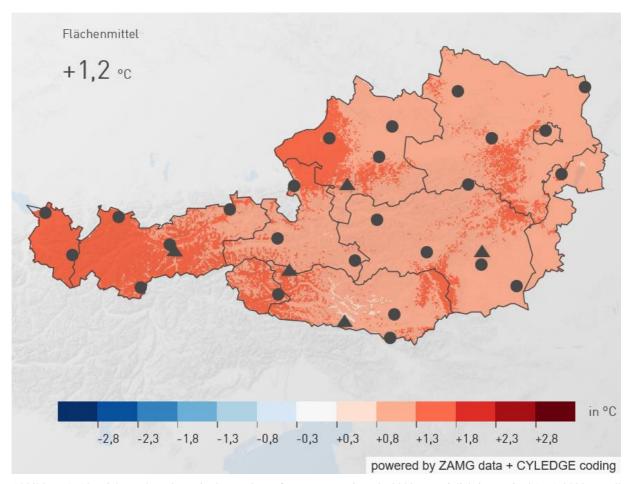


Abbildung 1: Abweichung des Jahresmittelwerts der Lufttemperaturen im Jahr 2022 vom vieljährigen Mittel 1991-2020, erstellt im Rahmen des Klimamonitorings der ZAMG, basierend auf den Messdaten aus dem Klimastationsnetz.

Als eine besondere Herausforderung für den Pflanzenbau erwies sich in den meisten Regionen Österreichs im vergangenen Jahr die gegenüber dem langjährigen Mittel deutlich unterdurchschnittliche Niederschlagsmenge. Das Jahr 2022 zählt zu den fünfzehn trockensten Jahren der 165-jährigen Messgeschichte der ZAMG. Über ganz Österreich gemittelt wurde um 16 % weniger Niederschlag gemessen als im vieljährigen Mittel, wobei es kaum eine Region gab, die von dieser Trockenheit nicht betroffen war (Abbildung 2). Vor allem in den südöstlichen Gegenden wie das Burgenland oder die östliche Steiermark wurden in 2022 extrem niedrige Niederschlagsmengen gemessen, insbesondere Bilder vom stark ausgetrockneten Neusiedler See verdeutlichten diesen Wassermangel. Aber auch das Marchfeld verzeichnete weniger als 450 mm Jahresniederschlag, sodass auf vielen ackerbaulich genutzten Flächen künstlich bewässert werden musste.

Der Herbst 2021 stellte sich schon als ungewöhnlich trocken heraus. Auch der Winter glich größtenteils dieses Defizit nicht mehr aus, sodass die im Frühjahr von den Winterungen als Wachstumsstart genutzte Winterfeuchte vielerorts nicht wie gewohnt vorlag. Auch der März war vom gemessenen Niederschlag her unterdurchschnittlich, was die Problematik schon direkt am Anfang der Vegetationsperiode verdeutlichte, wenn auch einiges an Entwicklungsrückständen von den Pflanzen im warmen Mai wieder aufgeholt werden konnte. Einsetzende Niederschläge im Juni ermöglichte an vielen Orten noch eine zufriedenstellende Getreideernte. Für die Landwirtschaft in 2022 war besonders dramatisch, dass vor allem die Sommermonate Juli und August, welche bei späten Kulturen für eine gute Ernte im Herbst ausschlaggebend sind, besonders niederschlagsarm waren. Die Kulturen Mais, Sojabohne, Sonnenblume und Zuckerrüben waren hiervon besonders betroffen.

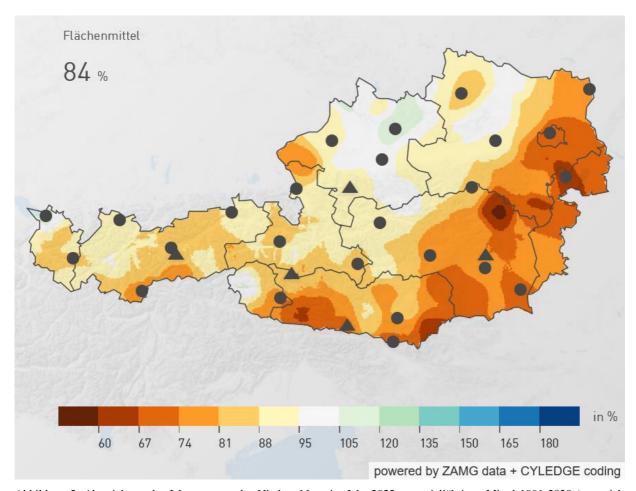


Abbildung 2: Abweichung der Jahressumme des Niederschlags im Jahr 2022 vom vieljährigen Mittel 1991-2020 (entspricht 100 %), erstellt im Rahmen des Klimamonitorings der ZAMG, basierend auf den Messdaten aus dem Klimastationsnetz.

Während des Projektverlaufes von KLIMAFIT 2 wurden eine große Anzahl von Zuchtlinien an ausgewählten Versuchsstandorten über ganz Europa und Österreich in Parzellenversuche gestellt. Dies ermöglichte die Selektion von Zuchtlinien, welche trotz Trockenstress am Versuchsstandort zufriedenstellende Erträge lieferten. Zusätzliche Bonituren und Messungen dienten dem Feststellen des Verhaltens der Pflanzen in der Umwelt und ermöglichten die Analyse der neuen Zuchtlinien hinsichtlich ihrer Qualität. In weiterer Folge werden vielversprechende Zuchtlinien für die amtliche Wertprüfung angemeldet, um so neue Sorten zur Zulassung zu bringen. Diese Sorten stehen in weiterer Folge der Landwirtschaft zur Verfügung und sind eine wichtige Maßnahme zur Anpassung an die geänderten klimatischen Bedingungen.

1.2 PROJEKTZIEL

Das gemeinsame, kontinuierliche und zentrale Ziel ist es, klimafitte Sorten für Österreich unter besonderer Berücksichtigung von Trockenheits- und Hitzetoleranz zu entwickeln, diese an den voranschreitenden Klimawandel sowie an regionale Erfordernisse anzupassen und die Kulturartenvielfalt im Sinne einer nachhaltigen Bewirtschaftung sicher zu stellen. Dadurch ergeben sich für das Projekt KLIMAFIT 2 folgende, spezifische Ziele:

- Generieren von neuem genetischen Material im Hinblick auf die Selektionsmerkmale für Hitze- und Trockenheitstoleranz sowie Toleranzen gegenüber in Folge des Klimawandels vermehrt neu auftretenden Pflanzenkrankheiten bzw. Schadorganismen
- Selektion von Sorten, die hitzetolerant und wassersparend sind sowie die starken Schwankungen im Witterungsverlauf über die verschiedenen Jahre tolerieren
- Sicherung der Erträge und auch der Qualitäten bei schwierigen Klimabedingungen wie langanhaltender Trockenheit oder Abfolge von Hitzetagen (= Ernährungssicherung)
- Selektion solcher klimabeständigeren Genotypen mit verbessertem landeskulturellen Wert
- Anpassung der Standardsorten an die Anforderungen der klimatischen Veränderung, insbesondere im Hinblick auf Hitze- und Trockenheitsbelastung
- Optimierung der Standortwahl für klimaangepasste Sorten im Hinblick auf Ihre Umweltverträglichkeit in Österreich, um eine nachhaltige Nutzung zu ermöglichen (Analyse der Genotyp/Umweltinteraktionen)
- Optimierung der Auswahl der am sichersten geeigneten Vermehrungsregionen im Hinblick auf den Klimawandel (Testung des Anbaus/der Vermehrung an verschiedenen Standorten)
- Reduzierung des Ausbreitungsrisikos von mit der Klimaänderung einhergehender Krankheiten bzw. Schadorganismen durch angepasste Resistenzzüchtung
- Anwendung der Projektziele auch auf die Bedingungen der biologischen Landwirtschaft
- Berücksichtigung von Kulturarten mit zukünftigem Marktpotential, insbesondere von Eiweißpflanzen
- Bewusstseinsbildung und Öffentlichkeitsarbeit für die Thematik "Zukünftige Ernährungssicherung in Österreich

1.3 KURZE DARSTELLUNG DER BISHERIGEN PROJEKTINHALTE

Der hier vorliegende Zwischenbericht über das zweite Projektjahr von KLIMAFIT 2 deckt den Zeitraum vom 01.01.2022 bis zum 31.12.2022 ab. Die im Projekt involvierten Züchtungsunternehmen nutzten dabei die zurückliegende Vegetationsperiode um bei einer großen Vielfalt an ackerbaulich relevanten Kulturen die Entwicklung von neuen, besser angepassten Sorten umzusetzen, wobei aufgrund der für Österreich prognostizierten Klimaveränderungen ein besonderer Fokus auf verbesserter Trockenstress- und Hitzetoleranz liegt. Die Selektion vielversprechender Zuchtlinien erfolgt ebenfalls unter Berücksichtigung von regionalen Erfordernissen sowie Resistenzen gegenüber ertragsmindernder Pflanzenkrankheiten, um so die Kulturartenvielfalt im Sinne einer nachhaltigen Bewirtschaftung sicher zu stellen.

Aufbauend auf den Erfahrungen von KLIMAFIT 1 wird im Projekt KLIMAFIT 2 ein zielgerichteter, simultaner Ansatz verfolgt, welcher in jedem Projektjahr erneut aufgegriffen wird. Neben der Evaluierung und genomischer und markergestützter Vorselektion von hitze- und trockenheitstoleranten Genotypen und Kreuzungskandidaten (AP1) wurden im gleichen Zeitraum Sortenversuche mit ausgewählten Zuchtlinien umgesetzt, um deren Verhalten in der Umwelt (Trockenstresstoleranz, Hitzestresstoleranz, Krankheitsresistenzen, etc.) festzustellen (AP2) und ihre kulturartenspezifischen Qualitäten (Proteingehalt, Ölgehalt, Kocheigenschaften, etc.) zu quantifizieren und zu ermitteln (AP3). Gemeinsam definierte und mitangebaute Standardsorten innerhalb der untersuchten Kulturarten erlauben eine Auswertung der erhobenen Daten über Standorte und Versuche hinweg.

Über die gesamte Projektdauer des Projektes KLIMAFIT 2 wird ein breiter Ansatz hinsichtlich der untersuchten Kulturarten gewählt, um die große Vielfalt und die Spezialisierung der österreichischen Landwirtschaft auch in Zukunft sicherzustellen. Die innerhalb des Projektes vertretenen Kulturarten werden in drei Kulturartengruppen eingeteilt:

- i) Getreide & Mais: Die Kulturartengruppe mit der größten pflanzenbaulichen Bedeutung in Österreich. Neben Winter- und Sommerweizen, Winter- und Sommergerste, Winterroggen, Sommer- und Winterhafer, Wintertriticale, Sorghum und Rispenhirse wurden auch Mais und Silomais in die Versuche gestellt.
- ii) Öl- & Eiweißpflanzen: Neben klassischen Öl- & Eiweißpflanzen wie Raps, Sonnenblume, Ackerbohne und Körnererbse beinhaltete diese Gruppe auch Sojabohne, die österreichische Traditionskultur Ölkürbis und weitere Spezialkulturen wie Weiße Lupine sowie Käfer- und Gartenbohne. Aufgrund mangelndem Ausgangsmaterial und schwieriger Versuchsbedingungen konnten anders als noch im vorherigen Projektjahr keine verwertbaren Versuchsdaten bei Linse und Öllein generiert werden.
- iii) Kartoffel: Die Kartoffel ist eine in der österreichischen Züchtungstradition eher kleinere Kulturart, welche jedoch aufgrund einer langen Anbautradition regionalspezifische Bedeutung hat

Für alle oben angeführten Kulturarten wurden eine große Anzahl von Parzellenversuchen im In- und Ausland durchgeführt und durch eine kontinuierliche Bonitur relevanter Parameter das Verhalten der neuen Zuchtlinien in der Umwelt dokumentiert. Es erfolgte eine Selektion derjenigen Zuchtlinien, die – oftmals über mehrere Umwelten hinweg – positive Eigenschaften aufwiesen. Finales Ziel des Projektes ist die Sortenzulassung. Daher wurden vielversprechende Zuchtlinien für die Anmeldung zur Wertprüfung ausgewählt. Der hier vorliegende zweite KLIMAFIT 2 Zwischenbericht gibt einen Überblick über das Ausmaß der im Jahr 2022 durchgeführten Versuche auf dem Weg zur Entwicklung klimafitter Sorten. Der Bericht zeigt die Qualitäten und erhobenen Parameter ausgewählter, vielversprechender Zuchtlinien innerhalb aller untersuchten Kulturartengruppen auf.

2.1 VERSUCHSSTANDORTE

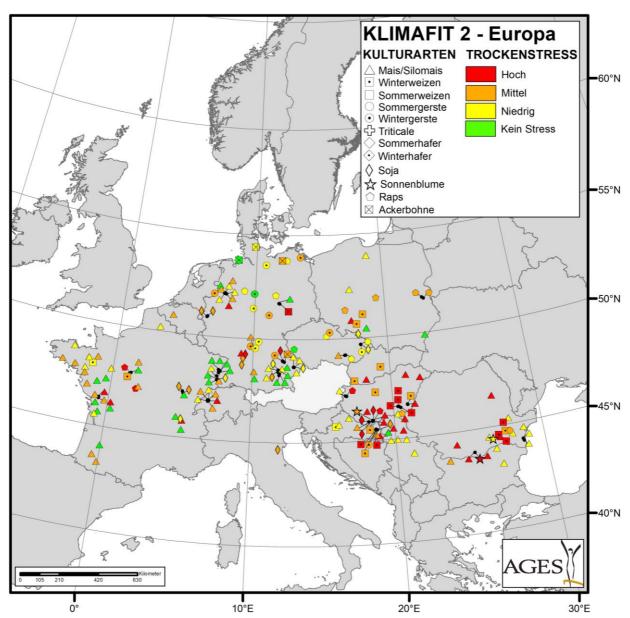


Abbildung 3: Übersicht über die 198 Standorte im europäischen Ausland an denen im zweiten Projektjahr (2022) Parzellenversuche der unterschiedlichen Kulturarten angelegt wurden. Die jeweilige Farbe des Symbols gibt die von den Züchter:innen bewertete Trockenstress-Intensität, welche am jeweiligen Standort auf die Pflanzen einwirkte, wieder. Eine höhere Auflösung der Karte findet sich im Anhang.

Im zweiten KLIMAFIT 2 Projektjahr 2022 wurden über alle Kulturarten hinweg an 340 Standorten im In- und Ausland insgesamt 1457 Versuche angelegt (Abbildung 4). Genau 142 dieser Standorte (das entspricht 41.8 %) befanden sich dabei in Österreich. Die verbliebenden 198 Standorte verteilten sich auf das europäische Ausland (Abbildung 3).

Dieses weitgespannte Versuchsnetz ermöglicht eine breite Selektion von Zuchtstämmen hinsichtlich ihrer Reaktion auf Trockenheits- und Hitzestress, da Zuchtlinien auch an Standorten in Versuche gestellt werden, bei denen Anbaubedingungen herrschen, wie sie klimawandelbedingt in den kommenden Jahrzenten in Österreich zu erwarten sind. Darüber hinaus erlaubt eine breite Versuchsanlage eine Selektion hinsichtlich

weiterer relevanter Parameter, wie z.B. Resistenzen gegenüber mit der Klimaänderung einhergehender Krankheiten bzw. Schadorganismen, bei denen schwer vorauszusagen ist, ob diese in einem bestimmten Jahr oder an einem bestimmten Standort zuverlässig auftreten werden.

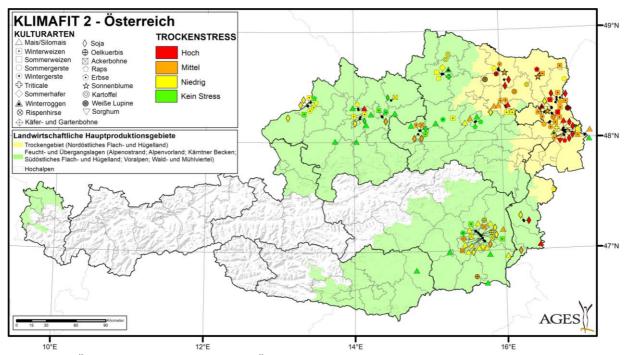


Abbildung 4: Übersicht über die 142 Standorte in Österreich, an denen im zweiten Projektjahr (2022) Parzellenversuche der unterschiedlichen Kulturarten angelegt wurden. Die jeweilige Farbe des Symbols gibt die von den Züchter:innen bewertete Trockenstress-Intensität, welche am jeweiligen Standort auf die Pflanzen einwirkte, wieder. Eine höhere Auflösung der Karte findet sich im Anhang.

2.2 STANDORTBEWERTUNG HINSICHTLICH TROCKENSTRESS

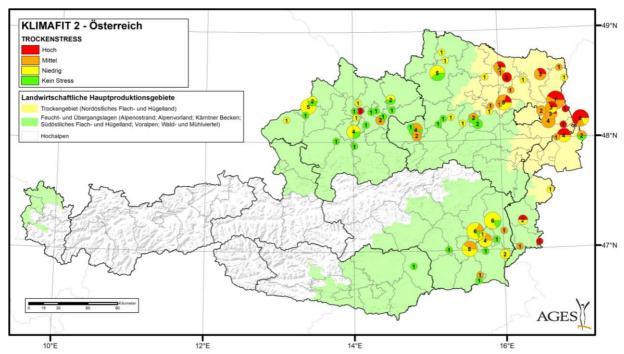


Abbildung 5: Verteilung der einzelnen österreichischen Versuchsstandorte des zweiten Projektjahres 2022 und der dazugehörigen Trockenstress-Intensität der Standorte. Eine höhere Auflösung der Karte findet sich im Anhang.

Alle Standorte wurden von den betreuenden Züchter:innen hinsichtlich der Trockenstress-Intensität, welche während der Vegetationsperiode auf die jeweilige am Standort angebaute Kulturart einwirkte, bewertet. Dies ermöglichte eine Evaluierung des Ausmaßes des Trockenstresses und einen späteren Vergleich zwischen den Anbauversuchen. Diese Methode hatte sich bereits im Vorgängerprojekt KLIMAFIT 1 bewährt und wurde für die KLIMAFIT 2 Methodik gleichbleibend übernommen. Die folgenden Abstufungen wurden zur Bewertung herangezogen:

- ➤ 1 = hohe Trockenstress-Intensität
- ➤ 2 = mittlere Trockenstress-Intensität
- ➤ 3 = niedrige Trockenstress-Intensität
- \rightarrow 4 = kein Trockenstress.

Wie in 1.1 dargelegt war auch das zurückliegende Anbaujahr 2022 überdurchschnittlich trocken, was sich auch in der Trockenstress-Bewertung der Versuchsstandorte widerspiegelte. In 2022 wurden 19,7 % aller 340 im Projekt inkludierten Versuchsstandorte von den versuchsdurchführenden Züchter:innen mit der höchsten Trockenstress-Intensität (Stufe 1 = hoch) bewertet (Tabelle 1). Dies entsprach einer Gesamtheit von 67 Standorten, wobei sich 21 dieser Standorte in Österreich und 46 im europäischen Ausland befanden. Weitere 101 Standorte (entspricht 29,7 %) wurden mit der zweithöchsten Trockenstress-Intensität (Stufe 2) bewertet, hiervon befanden sich 40 innerhalb Österreichs. Am öftesten (110 Standorte, entspricht 32,4 %) wurden im vergangenen Projektjahr die Versuchsstandorte in die Kategorie 3 – das entspricht einer niedrigen Trockenstress-Intensität – eingestuft, hiervon befanden sich 51 Standorte im Inland und 59 Standorte im europäischen Ausland. An den restlichen 62 der insgesamt 340 Standorte, dies entspricht 18,2 %, lag kein auf die Pflanzen der dort jeweilig angebauten Kulturart einwirkender Trockenstress vor (Stufe 4). Folglich wurden im zweiten KLIMAFIT 2 Projektjahr knapp die Hälfte (49,4 %) aller nationalen und internationalen Standorte von den Züchter:innen mit den beiden höchsten Trockenstress-Intensitäten bewertet. An diesen trockengestressten Standorten wurde 48,3 % aller Versuche angelegt.

Bei der statistischen Auswertung wurden Versuche, welche von den Züchter:innen hinsichtlich der einwirkenden Trockenstress-Intensität auf die Pflanzen mit hoch (1) oder mittel (2) bewertet wurden, als Trockenstress-Versuche definiert.

Tabelle 1: Anzahl der im zweiten Projektjahr (2022) für Parzellenversuche verwendeten Standorte (inkl. Anzahl der Versuche) je Kulturart, gruppiert in die vier Stufen der von den Züchter:innen bewerteten Trockenstress-Intensität; 1 = hoch, 2 = mittel, 3 = niedrig, 4 = kein Trockenstress.

	Standort	Standorte (Versuche) nach Trockenstress-			Gesamtanzahl Standorte
Kulturart		Intensität			
	1	2	3	4	(Versuche)
Getreide	14 (20)	35 (130)	26 (89)	13 (70)	88 (309)
Sommerweizen	0 (0)	0 (0)	1(1)	0 (0)	1 (1)
Winterweizen	12 (17)	19 (58)	7 (23)	5 (27)	43 (125)
Sommergerste	0 (0)	2 (4)	4 (13)	0 (0)	6 (17)
Wintergerste	0 (0)	14 (68)	9 (44)	5 (38)	28 (150)
Sommerhafer	0 (0)	0 (0)	1(1)	0 (0)	1 (1)
Wintertriticale	0 (0)	0 (0)	1 (3)	2 (4)	3 (7)
Winterroggen	1(1)	0 (0)	1(1)	1(1)	3 (3)
Rispenhirse	0 (0)	0 (0)	1 (2)	0 (0)	1 (2)
Sorghum	1 (2)	0 (0)	1(1)	0 (0)	2 (3)
Mais	28 (264)	31 (146)	49 (250)	42 (165)	150 (825)
Silomais	0 (0)	3 (34)	3 (29)	1 (2)	7 (65)
Körnermais	28 (264)	28 (112)	46 (221)	41 (163)	143 (760)
Öl- und Eiweißpflanzen	25 (58)	33 (85)	32 (149)	7 (21)	97 (313)
Sojabohne	15 (38)	15 (48)	16 (39)	2 (12)	48 (137)
Raps	5 (13)	6 (10)	9 (79)	4 (8)	24 (110)
Sonnenblume	1(1)	4 (8)	1(1)	0 (0)	6 (10)
Ölkürbis	1 (3)	1 (8)	2 (19)	0 (0)	4 (30)
Ackerbohne	1 (1)	5 (9)	3 (10)	1(1)	10 (30)
Körnererbse	1(1)	1(1)	0 (0)	0 (0)	2 (2)
Weiße Lupine	1 (1)	0 (0)	1(1)	0 (0)	2 (2)
Käfer- und Gartenbohne	0 (0)	1 (1)	0 (0)	0 (0)	1 (1)
Kartoffel	0 (0)	2 (2)	3 (8)	0 (0)	5 (10)
Summe	67 (342)	101 (363)	110 (496)	62 (256)	340 (1457)

2.3 VERSUCHSAUFBAU

Die Auswahl der Zuchtlinien für die anzubauenden Parzellenversuche erfolgt durch die im Projekt KLIMAFIT 2 beteiligten Züchtungsunternehmen. Ein Versuch ist dabei als eine Serie von Zuchtlinien einer Kulturart (d.h. Genotypen) definiert, welche an einem Standort unter den gleichen Bedingungen angebaut und evaluiert werden. Die Versuche selber hatten keine definierte Größe, die Anzahl der untersuchten Zuchtlinien innerhalb eines Versuches kann je nach Züchtungsunternehmen, Kulturart oder Standort stark variieren. Weiterhin waren die Züchter:innen mit der Planung, dem Anlegen, der korrekten Durchführung und den fortlaufenden Bonituren der festgelegten Versuche im In- und Ausland beauftragt. Die Versuche im Ausland wurden gegebenenfalls mit der Hilfe von Partnerunternehmen durchgeführt, mit denen meistens schon eine lange und intensive Zusammenarbeit besteht. Innerhalb eines Versuches wurden die unterschiedlichen Zuchtlinien in Parzellen mit mehrfacher Wiederholung angebaut, wobei auch hier die Anzahl der Wiederholungen je nach Versuch oder Standort variieren kann. Aufgrund der großen Anzahl durchgeführter Versuche (siehe Tabelle

1) und der Vielfalt der beteiligten Züchtungsunternehmen kann keine allgemeingültige Aussage über den exakten Versuchsaufbau getroffen werden.

2.4 VORSELEKTION VON GENOTYPEN

Neben ausgewählten Zuchtlinien, welche im Rahmen des Projektes KLIMAFIT 2 in die Exaktparzellenversuche zur Feststellung ihres Verhaltens in der Umwelt gestellt werden, erfolgt auch eine Erstevaluierung und Vorselektion von vielversprechenden Genotypen mit einem speziellen Fokus auf Trockenheits- und Hitzestresstoleranz, aber auch hinsichtlich ausgewählter Krankheitstoleranzen bzw. weiteren erstrebenswerten Eigenschaften. Dies dient der Ermittlung von potentiellen Kreuzungspartnern, um schlussendlich die heimischen Sorten in den gesuchten neuen Eigenschaften zu verbessern. Die Generierung neuen genetischen Materials durch Kreuzungen unterstützt den Aufbau eines breiten Genpools, der auch für künftige Züchtungsaktivitäten genutzt werden kann, und ist bei allen in das Projekt einbezogenen Kulturpflanzen eine fundamental wichtige Arbeit für die Entwicklung neuer, klimafitter Sorten.

Das Durchführen von Kreuzungen und die Vorselektion von vielversprechenden Genotypen wurde dabei von den Züchtungsunternehmen eigenverantwortlich durchgeführt. Dabei kamen zum einen klassische Züchtungsmethoden (Trainingspopulation, traditionelle Kreuzungszüchtung mit anschließender Ähren- oder Pflanzenselektion, Doppelhaploidenzüchtung, etc.) als auch genomische und markergestützte Analysen (SDS-Elektrophorese, genomische Vorhersagemodelle, etc.) zur Anwendung. Die Methoden der genomischen und markergestützten Vorselektion wurde in erster Linie bei der Selektion von neuem Zuchtmaterial innerhalb der Kulturartengruppen Getreide und Mais, sowie Öl- und Eiweißpflanzen angewendet.

Um neues genetisches Material zu erzeugen wurden im zurückliegenden Projektjahr bei Getreide eine Vielzahl von Kreuzungsversuchen durchgeführt. In erster Linie wurden dabei klassische Züchtungsmethoden in der Selbst- und Fremdbefruchterzüchtung angewandt, d.h. die traditionelle Kreuzungszüchtung mit anschließender Ähren- oder Pflanzenselektion. Für die Auswahl der potentiellen Kreuzungseltern wurden einerseits heimische Sorten geprüft und verwendet, andererseits aber auch die Kombination mit süd- und osteuropäischen Sorten gesucht, um neue hitze- und trockenheitstoleranten Sorten für geänderte Klimabedingungen zu entwickeln. Bei Weizen wurde beispielsweise erneut die SDS-Elektrophorese für die Kombination der richtigen Marker für Qualitätsweizen angewandt. Die geernteten Kreuzungskörner wurden in Chile zur Winter-Zwischengeneration angebaut um ein wertvolles Jahr zu sparen. Insbesondere bei Wintergerste wurde die Produktion von Doppelhaploiden intensiviert, um in der Züchtung rascher auf die Klimaänderungen reagieren zu können. Dabei wurde insbesondere auf die Selektionsmerkmale Trockenheitstoleranz, Hitzetoleranz, Winterhärte, Pflanzengesundheit, mittlere bis längere Pflanzenlänge geachtet, sowie ob die hohen Anforderungen an die Qualität der selektierten Sorten für den Einsatz als Lebensund Futtermittel erfüllt werden. Bei der Kulturart Winterweizen wurde im vergangenen Projektjahr erstmals ein neuer Prozess zur automatisierten Auswertung der erhobenen Felddaten eingeführt. Das neue System ermöglicht eine Erkennung von auftretenden Änderungen der Umweltbedingungen (z.B. Trockenstress, Änderungen der Pathogene, etc.) bereits früh im Erntejahr und schafft damit die Möglichkeit, die Kalibrierungen der genomischen Vorhersagemodelle besser an die auftretenden Bedingungen anzupassen. Neben dem Winterweizen wurden auch Kreuzungen mit nachfolgenden gezielten Selektionen - neben der Selektion auf Trocken- und Hitzestress - bei den Kulturarten Wintergerste (Selektion hinsichtlich Resistenz gegenüber dem Barley Yellow Dwarf Virus), Sommergerste (Selektion hinsichtlich Langstrohigkeit und Unkrautunterdrückung für Biolandbau-Sorten), Winterroggen und Sommerhafer (Selektion hinsichtlich Nematodenresistenz) durchgeführt.

Im Rahmen des Projektes wurde ebenfalls die Entwicklung von Maishybriden vorangetrieben bei denen der Fokus auf einer Toleranz gegenüber Kolbenfäule und der damit verbundener Toxinbelastung lag. Um auf geänderte Produktionsbedingungen (Hitze und Trockenheit, vermehrte Schädlinge am Kolben) zu reagieren, wurden auch in 2022 ausgewählte Sorten in Italien, Ungarn, Österreich, Rumänien, Serbien, Spanien und

Deutschland hinsichtlich ihrer Toleranz gegenüber natürlicher und künstlicher Infektionen geprüft. Die erhobenen Daten dienten der Selektion von neuen Sorten sowie Inzuchtlinien im fortgeschrittenen Selektionszyklus (2 Jahre vor Verkaufsstart). Als Selektionsmerkmale dienten dabei die Stärke und Intensität des Befalls, sowie die erhobenen Toxinwerte im Zuge der künstlichen Infektion am Kolben. Genetische Daten der Prüfkandidaten auf Anfälligkeit von Kolbenfusarien wurden zur Berechnung von *Genetically Enhanced Breeding Values* herangezogen.

Die klimatischen Bedingungen in der Steiermark im zurückliegenden Projektjahr erlaubten die Selektion von Mais Inzuchtlinien und auch Prüf-Hybriden auf Trockenheitstoleranz. Die Abreife der Bestände war zwar grundsätzlich sehr gleichmäßig, trat aber trockenheitsbedingt teilweise sehr früh für dieses Anbaugebiet auf. In der Linienentwicklung wurde vor allem auf eine gute Bereinigung von Fremdtypen und auf eine gute Selektion geachtet. Es wurden eine Vielzahl an Parzellen mit verschiedener Linien angebaut und bearbeitet. Die Produktion der für 2023 vorgesehenen Testhybriden im Zuchtgarten und den Tops verlief mit einzelnen Ausfällen zufriedenstellend. Aufgrund der langen Trockenperiode zur Blüte konnte auch hier auf Trockenheitstoleranz selektiert werden. Die schlechte Befruchtung, bedingt durch diese Trockenperiode, spiegelte sich auch im Ertrag wieder.

Um die genetische Basis des Sojabohnen Zuchtmaterials zur Selektion zu verbreitern, erzeugten die im Projekt involvierten Sojabohnen-Züchtungsunternehmen Kreuzungskombinationen aus genetischen Ressourcen sowie etablierten Linien und Sorten. Bei der Auswahl der Kreuzungspartner wurde der Fokus auf einen hohen Kornertrag, Standfestigkeit und einen hohen Proteingehalt sowie auf eine gute Jugend- und Biomasseentwicklung gelegt. Verstärkt eingesetzt wurde auch Genetik mit späterer Reife, um die durch den Klimawandel potentiell verlängerte Vegetationsperiode voll ausnutzen zu können. Aufgrund des oftmaligen Auftretens von Trockenstress während der Sommermonate war an mehreren Standorten eine Selektion hinsichtlich Trockentoleranz möglich. Weiterhin konnte auch hinsichtlich einer Toleranz gegenüber diverser pilzlicher Krankheitserreger selektiert werden, insbesondere hinsichtlich Diaporthe. Eine kühle und verregnete Schlechtwetterphase von etwa drei Wochen im September versursachte zum Teil schwere Infektionen. Wiederum verstärkt in den letzten Jahren beobachtet wurde die Grüne Reiswanze (Nezara viridula) welche von den milderen Wintern und heißeren Sommern profitiert und sich ab ca. 2010 in Österreich etablieren konnte. Dieses Schadinsekt ist somit ein Profiteur des Klimawandels und tritt in den vergangenen Jahren gehäuft in Österreich in Erscheinung. Aus den Zuchtgartenparzellen sowie den weiteren Selektionsparzellen, die Linien in Entwicklung sowie neue genetische Herkünfte umfassten, konnten Kandidaten für neue Kreuzungskombinationen sowie interessante, robuste Linienkandidaten für eine erstmalige Parzellenprüfung ausgewählt werden. Ebenfalls konnte ein für die Kulturart Sojabohne im Zuge des Projekts KLIMAFIT entwickeltes, 2-stufiges Modell zur Differenzierung von Standorten in normale Standorte und Standorte mit erhöhtem Trockenstress mit den im Jahr 2022 erhobenen Daten weiter optimiert werden, um eine bessere Differenzierung zu ermöglichen.

Für den Aufbau von Ackerbohnen-Zuchtmaterial wurden Isolierhäuser verwendet. Die Winterackerbohnen zeigten zwar starke Gelbverfärbungen beim Auflaufen im Herbst, erholten sich bis in den Frühling aber vollständig ohne nennenswerte Auswinterungsschäden. Die Sommerackerbohnen liefen gut auf, zeigten aber schon in der frühen Jugendentwicklung Virussymptome, die sich bis zur Blüte massiv ausprägten. Obwohl die Winterackerbohnen am selben Schlag standen, konnten in dieser Kultur in den Tunnels keinerlei Virussymptome bonitiert werden. Bei den Sommerackerbohnen wurden 2022 sechs neue Kreuzungskombinationen mit Vicin/Convicin-reduzierten, kleinkörnigen oder frühreifen Partnern zur Verbesserung des Futterwerts oder Etablierung einer früheren Reife bearbeitet. Zwei dieser Kreuzungskombinationen wurden im Winterzuchtgarten in Teneriffa wiederholt, um mit mehr F1-Ausgangsmaterial in die Entwicklung starten zu können. Im Winterackerbohnen-Zuchtprogramm wurden 9 neue Kreuzungskombinationen bearbeitet, welche entweder eine Verbesserung der Winterhärte, die Etablierung eines hellen Nabels, Vicin/Convicin-Reduktion, Frühreife oder Weißblütigkeit zum Ziel hatten.

Das Frühjahr 2022 bot am Zuchtgartenstandort sehr gute Bedingungen für eine gute Entwicklung des Ölkürbis, mit anhaltend hohen Temperaturen und einer ausreichenden Niederschlagsversorgung. Die rasche Entwicklung bedingte sogar eine verfrühte Blüte und Bestäubung, welche vor der im Juli eingetretenen Heißwetter- und Trockenphase weitgehend abgeschlossen war. Durch die hohen Tagestemperaturen und der Trockenheit während des Sommers konnte gut hinsichtlich Trockenstress selektiert und bonitiert werden. Zur Schaffung von neuem Ausgangsmaterial bei Ölkürbis wurden etablierte Linien gekreuzt, die durch ihre Eigenschaften wie eine hohe Fruchtzahl, eine gute Kornausprägung und die Ausbildung mehrerer, längerer Triebe, eine gute Kompensationsfähigkeit für verschiedene Umwelten aufwiesen.

Bei Buchweizen wurde im Zuchtgarten die Selektion von Sortenkandidaten, die gegenüber den sich verändernden und herausfordernden klimatischen Verhältnissen widerstandsfähig sind, in den bereits vorhandenen Ausgangspopulationen fortgesetzt. Aufgrund der trockenen Sommermonate war auch in 2022 eine gute Selektion hinsichtlich Trockenheitstoleranz möglich. Besonders wurde auf die Evaluierung des Samenertrags, eine gute Standfestigkeit, gute Trockenheitstoleranz und eine gleichmäßige Abreife Wert gelegt. Das Buchweizen-Zuchtmaterial wurde im Isolierhaus zur weiteren Entwicklung angebaut und sechs Populationen für eine etwaige Prüfung auf isolierten Standorten zur Selektion und Vermehrung angebaut. Die Erntemengen waren zufriedenstellend und es konnte hinsichtlich Samenausbildung und Samengröße selektiert werden. Kompakte Wuchstypen zeigten hinsichtlich extremer Wetterereignisse und Trockenstress einen besseren Gesamteindruck als indeterminiert wachsende Formen.

Die in 2022 am Versuchsstandort vorliegenden warmen Frühjahrsbedingungen sowie die trockenen und heißen Sommermonate boten optimale Bedingungen für die Kultivierung von Rispenhirse. Aussichtsreiche Kandidaten von neu aufgebautem, segregierendem Material wurden selektiert und können 2023 erstmals hinsichtlich ihrer Leistungsfähigkeit evaluiert werden.

Im Rahmen des Projektes KLIMAFIT 2 ist bei der Kartoffel keine genomische und markergestützte Vorselektion vorgesehen, die Generierung von neuem genetischen Material erfolgt durch die klassische Kombinationskreuzung. Diese wurde auch im zweiten Projektjahr konsequent weiterverfolgt. Dazu wurden im betriebseigenen Glashaus rund zwölf verschiedene Kreuzungsprogramme (z.B. "Chips", "Frites", "Salat", "Stärke", "rotschalig" etc.) durchgeführt, bei denen Eltern mit spezifischer Eignung miteinander gekreuzt wurden. Da Kartoffelpflanzen fremdbefruchtend sind und ihr Pollen relativ schwer ist, konnten die Pflanzen im Glashaus nebeneinander angeordnet stehen, und händisch mit einem Pinsel befruchtet werden, wobei darauf geachtet wurde, dass sich keine Insekten im Glashaus befinden. Im Zeitraum Mitte Mai bis Ende Juni wurden auf diesem Wege ca. 300 Kreuzungen durchgeführt, wobei hier das Ziel ist ca. 200 funktionierende Kreuzungen zu finden. Dieses angepeilte Ziel von 200 funktionierenden Kreuzungen wurde in 2022 leider nicht ganz erreicht, es konnten lediglich von ca. 140 Kreuzungen Samen geerntet werden. Obwohl die Pflanzen im Glashaus zunächst eine gute Blütenbildung aufwiesen, wurden im weiteren Verlauf bestäubte Blüten wieder abgeworfen, auch wenn keine überdurchschnittlich heißen Temperaturen im Glashaus gemessen wurden. In 2022 konnte der Projektpartner ein neues Glashaus eröffnen, welches eine bessere Temperaturund Belichtungssteuerung ermöglicht. Ab Ende März 2023 werden die Kreuzungsversuche in dieses Glashaus verlagert, wodurch sich das Unternehmen eine Verbesserung der Kreuzungen verspricht.

Die Samen der befruchteten Pflanzen wurden anschließend geerntet, und ausgesät. Nach der Keimung erfolgte das Pikieren der Keimlinge, anschließend wurden ca. 50.000 Sämlinge im Folientunnel angebaut. Für jeden sich zur adulten Pflanze entwickelten Sämling wurde anschließend eine Knolle geerntet, was im Jahr 2022 auf ca. 42.000 geerntete Knollen hinauslief. Diese Knollen werden in der darauffolgenden Saison erneut gepflanzt und durchlaufen anschließend einer intensiven Selektion hinsichtlich verschiedener Parameter und Charakteristika, wobei naturgemäß nur hinsichtlich der in der Umgebung auftretenden Bedingungen selektiert werden kann. Im vergangenen Projektjahr 2022 – in dem die Knollen der Sämlinge aus dem ersten Projektjahr selektiert wurden – wurden ca. 3.000 Zuchtstämme, welche durchlaufend nummeriert wurden, für weitere Versuche behalten. Der Versuchsstandort der an denen die Kartoffel-Zuchtstämme zuerst selektiert wurden,

war in 2022 vom Wasserhaushalt her optimal, was eine Selektion auf Trockenstresstoleranz erschwerte. Stattdessen konnte gut hinsichtlich vorteilhafter Qualitätsmerkmale selektiert werden. Selektierte, vielversprechende Zuchtstämme können dann in den folgenden Vegetationsperioden hinsichtlich Trockenstress- und Hitzetoleranz selektiert werden, wenn die entsprechenden Bedingungen auftreten.

2.5 BONITUREN DER PARZELLENVERSUCHE & QUALITÄTSANALYSEN

Das Anlegen der Parzellenversuche und das Durchführen der Bonituren zum Feststellen des Verhaltens der Zuchtlinien in der Umwelt obliegt den im Projekt KLIMAFIT 2 beteiligten Züchtungsunternehmen. Die Qualitätsanalyse des Erntegutes der angebauten Zuchtstämme fällt ebenfalls in den Verantwortungsbereich der Züchtungsunternehmen und erfolgt durch das Ernten, Wiegen und das Entnehmen von Proben mit anschließender Qualitätsanalyse im Labor. Abhängig vom Vegetationsverslauf und dem Erscheinungsbild der Pflanzen in den Parzellenversuchen wird vor der Ernte entschieden, von welchen Zuchtlinien und in welchen Versuchen Erntemuster für die weiteren Qualitätsanalysen gezogen werden, um weitere Erkenntnisse in Richtung Umwelttauglichkeit der Zuchtlinien in den verschiedenen Klimagebieten zu gewinnen. Dabei lag der Hauptfokus bei allen Parzellenversuchen und Qualitätsanalysen stets auf der Selektion von hitze- und trockenstresstoleranten Zuchtlinien als Basis für die Entwicklung von klimafitten Sorten. Dennoch sind für eine erfolgreiche Sortenzulassung, neben einem hohen Ertragsniveau unter Trockenstress-Bedingungen, das Vorhandensein kulturartenspezifischer Qualitäten und ein spezielles Verhalten in der Umwelt notwendig. Ein wesentlicher Fokus bei den Bonituren liegt ebenfalls auf vorhandenen Krankheitsresistenzen um das Ausbreitungsrisiko von mit der Klimaänderung einhergehender Krankheiten zu reduzieren. Die nachfolgenden Tabellen zeigen die Anzahl der jeweiligen durchgeführten Bonituren und ermittelten Qualitäten bei den entsprechenden Kulturarten auf, und geben einen Einblick über das Volumen der durchgeführten Arbeiten im zweiten KLIMAFIT 2 Projektjahr (2022).

2.5.1 GETREIDE

Tabelle 2: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Weizen. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Kolben- oder Grannenweizen	K = Kolben-, G= Grannenweizen	4851
Qualitätseinstufung	Q/M/F	1621
Biolandbau	JA/NEIN	1481
Datum Ährenschieben	Tage ab 1.Jan	2828
Wuchshöhe	cm	2729
Reifebonitur	Bon.1-9	1337
Lagerung	Bon.1-9	1318
Datum Gelbreife	Tage ab 1. Jänner	40
Mängel vor Winter	Bon.1-9	480
Mängel nach Winter	Bon.1-9	892
Anzahl Bestockungstriebe im Frühjahr	Bon.1-9	1602
Frohwüchsigkeit zum Schossen	Bon.1-9	1602
Mehltau (ERYSIPHE GRAMINIS)	Bon.1-9	851
Gelbrost (PUCC. STRIIFORMIS)	Bon.1-9	237
Braunrost (P.TRIT., P. DISP.)	Bon.1-9	543
Septoria tritici - Blattdürre	Bon.1-9	40
Blattseptoria (Septoria nodorum)	Bon.1-9	1126
DTR/HTR-Blattdürre	Bon.1-9	400

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Ährenfusarium (FUSARIUM SP.)	Bon.1-9	749
Blatthaltung (Bio)	Bon.1-9	40
Kornertrag	dt/ha	4253
Rohproteingehalt	%	2851
Hektolitergewicht	kg	3615
Sedimentationswert	ml	725
Tausendkorngewicht	g TM	2512
Feuchtkleber	%	2756
Fallzahl nach Kolbach	%	535
Kornbonitur	Bon.1-9	711
Glasigkeit	Bon.1-9	711
Wasseraufnahme NIR	ml	1534

Tabelle 3: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Gerste. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Zweizeilig oder mehrzeilig	Z/M	6357
Brau oder Futter	B/F	3958
Datum Ährenschieben	Tage ab 1.Jan	5297
Wuchshöhe	cm	4339
Lagerung	Bon.1-9	4409
Mehltau (ERYSIPHE GRAMINIS)	Bon.1-9	2284
Viroese Gelbverzwergung	Bon.1-9	208
Zwergrost (PUCCINIA HORDEI)	Bon.1-9	2729
Netzflecken (PYRENOPH. TERES)	Bon.1-9	905
Rhyncosporium Blattflecken	Bon.1-9	665
Ramularia-Blattflecken	Bon.1-9	2307
Gelbreife	Bon.1-9	1004
Neigung zu Halmknicken	Bon.1-9	2732
Mängel nach Winter	Bon.1-9	4325
Kornertrag	dt/ha	6043
Tausendkorngewicht	g TM	3639
Hektolitergewicht	kg	4554
Sortierung > 2,2 mm (Marktware)	%	1851
Sortierung > 2,5 mm (Vollgerste)	%	4018
Sortierung > 2,8 mm	%	4018
Kornbonitur	Bon.1-9	1398
Rohproteingehalt	%	1786

Tabelle 4: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Hafer. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Datum Ährenschieben	Tage ab 1. Jan	25
Wuchshöhe	cm	25
Reifebonitur	Tage ab 1. Jan	25
Netzflecken	Bon.1-9	25
Kornertrag	dt/ha	25
Hektolitergewicht	kg	25
Tausendkorngewicht	g TM	25
Schlitzsieb >2,5mm	%	25
Schlitzsieb 2,5 – 2,2 mm	%	25
Schlitzsieb 2,2 – 2,0 mm	%	25

Tabelle 5: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Wintertriticale. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Datum Ähren(Rispen-)Schieben	Tage ab 1.Jan	210
Wuchshöhe	cm	209
Lagerung	Bon.1-9	90
Mehltau (ERYSIPHE GRAMINIS)	Bon.1-9	210
Braunrost (P.TRIT., P. DISP.)	Bon.1-9	60
Gelbrost (PUCC. STRIIFORMIS)	Bon.1-9	120
Kornertrag	dt/ha	210
Hektolitergewicht	kg	90

Tabelle 6: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Winterroggen. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Datum Ähren(Rispen-)Schieben	Tage ab 1.Jan	36
Wuchshöhe	cm	36
Lagerung	Bon.1-9	36
Mehltau (ERYSIPHE GRAMINIS)	Bon.1-9	18
Braunrost (P.TRIT., P. DISP.)	Bon.1-9	18
Schwarzrost	Bon.1-9	18
Kornertrag	dt/ha	54
Hektolitergewicht	kg	18

Tabelle 7: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Rispenhirse. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Gesamteindruck	Bon.1-9	14
Blühbeginn	Tage ab 1. Juli	14
Wuchshöhe	cm	14
Reifebonitur	Bon.1-9	14
Lagerung	Bon.1-9	14
Kornertrag	dt/ha	14
Tausendkorngewicht	g TM	14

Tabelle 8: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Sorghum. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Wuchshöhe	cm	45
Rispenschieben	Bon.1-9	45
Jugendentwicklung	Bon.1-9	45
Lagerung	Bon.1-9	45
Reifebonitur	Bon.1-9	45
Kornertrag	dt/ha	15
Erntefeuchte	%	15
Farbe		45
Rohprotein XP	g/kg	7
Rohfaser XF	g/kg	7
N-freie Extraktstoffe XX	g/kg	7
Stärke XS	g/kg	7
Zucker XZ	g/kg	7
Rohfett XL	g/kg	7
Rohasche XA	g/kg	7

Tabelle 9: Erhobene Bonituren und Messung im zweiten Projektjahr bei Mais. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Reifegruppe auf Sortenebene	1/2/3/4	11176
Blattabreife	Bon.1-9	2791
Wuchshöhe	cm	2538
Jugendentwicklung	Bon.1-9	1228
Kolbenblüte	MMTT	337
Gebrochene Pflanzen	Zahl/Parzelle	1754
Lagerung	Bon.1-9	214
Istpflanzenzahl	Zahl/Parzelle	8935

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Zünslerbruch	Zahl/Parzelle	78
Beulenbrand	Zahl/Parzelle	287
Stängel- und Kolbenfäule (Fusarium)	Bon.1-9	391
Blattflecken	Bon.1-9	185
Helminthosporium	Bon.1-9	95
Gesamteindruck	Bon.1-9	4168
Korntyp	Bon.1-5	65
Kolbenansatzhöhe	cm	1164
Lieschenöffnung	Bon.1-9	65
Befruchtung	Bon.1-9	65
Maisertrag (14% H2O)	dt/ha	8636
Erntefeuchte	%	8630
Trockenmasseertrag (Silomais)	dt/ha	2064
Trockensubstanz in der Grünmasse (Silomais)	%	2099
Stärkegehalt (Silomais)	g/kg	54
Zuckergehalt	g/kg	36
Rohproteingehalt (Silomais)	g/kg	36
Rohfaser (Silomais)	g/kg	36
Rohfett (Silomais)	g/kg	36
enzym-lösliche organische Substanz (Silomais)	g/kg	90
Energie (Silomais)	MJ	36
neutrale Detergentienfaser (Silomais)	g/kg	36
Lignin (Silomais)	g/kg	36

2.5.2 ÖL- UND EIWEIßPFLANZEN

Tabelle 10: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Sojabohne. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Reifegruppe	"0", "00", "000/0000"	5607
Jugendentwicklung	Bon.1-9	1096
Wuchshöhe	cm	3565
Blattabreife	Bon.1-9	3065
Reifebonitur Datum 1	Bon.1-9	4721
Reifebonitur Datum 2	Bon.1-9	4386
Gesamteindruck	Bon.1-9	811
Lagerung 1 (BBCH 70-75)	Bon.1-9	4271
Lagerung 2 (vor Ernte)	Bon.1-9	4163
Tage bis Reife	n	3871
Mängel nach Aufgang	Bon.1-9	4482
Hülsenplatzfestigkeit	Bon.1-9	132
Hülsenansatzhöhe	cm	90
Peronospora	Bon.1-9	122
Diaporthe	Bon.1-9	663
Sclerotinia	Bon.1-9	55
Bakteriosen	Bon.1-9	14
Kornertrag (13% Restfeuchtigkeit)	dt/ha	5465
Erntefeuchte	%	5458
Tausendkorngewicht	g TM	1056
Rohproteingehalt	%	1299
Ölgehalt	%	1116

Tabelle 11: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Raps. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Sortentyp	H=Hybridsorte, F=freiabblühende Sorte	3529
Blühbeginn	Tage ab 1. Jänner	2825
Wuchshöhe	cm	3122
Reifebonitur früh	Bon.1-9	2301
Reifebonitur spät	Bon.1-9	1987
Jugendentwicklung (Herbstentwicklung)	Bon.1-9	2857
Schossintensität (Frühjahrsentwicklung)	Bon.1-9	2912
taube Spitzen		2289
Mängel vor Winter	Bon.1-9	3404
Mängel nach Winter	Bon.1-9	3062
Lagerung früh	Bon.1-9	2311
Lagerung spät	Bon.1-9	2534
Blühintensität	Bon.1-9	72
Phoma	Bon.1-9	150
Sclerotinia	Bon.1-9	1174
Verticillium	Bon.1-9	50
Kornertrag	dt/ha	3459
Rohproteingehalt	%	1553
Erntefeuchte	%	3460
Ölgehalt	%	1682

Tabelle 12: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Sonnenblume. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Jugendentwicklung	Tage ab 1. Jan	168
Blühbeginn	Bon.1-9	166
Wuchshöhe	cm	276
Reifebonitur I	Bon.1-9	204
Reifebonitur II	Bon.1-9	202
Lagerung	Bon.1-9	182
Mängel nach Aufgang	Bon.1-9	166
Stängelknicken	Bon.1-9	92
Broken Head	Bon.1-9	202
Head position	Bon.1-9	276
Kornertrag	dt/ha	202
Erntefeuchte	%	202

Tabelle 13: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Ölkürbis. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Sortentyp	H=Hybridsorte, F=freiabblühende Sorte	582
Jugendentwicklung	Bon.1-9	508
Ist-Fruchtzahl	n	582
Anzahl kleiner Früchte	n	560
Reifebonitur Datum 1	Bon.1-9	569
Reifebonitur Datum 2	Bon.1-9	569
Virosen	Bon.1-9	390
Blattnekrosen	Bon.1-9	513
Anzahl fauler Früchte bei Ernte	n	582
Relativer Anteil fauler Früchte bei Ernte	%	582
Kornertrag	dt/ha	582
Erntefeuchte	%	531
Tausendkorngewicht	g TM	426
Ölgehalt	%	196

Tabelle 14: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Ackerbohne. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Jugendentwicklung	Bon.1-9	1016
Blühbeginn	Tage ab Aussaat	973
Wuchshöhe	cm	1073
Gesamteindruck	Bon.1-9	957
Reifebonitur	Bon.1-9	881
Lagerung	Bon.1-9	850
Auswinterung (Winterschaden, Winterackerbohne)	Bon.1-9	42
Virusbefall	Bon.1-9	830
Schokoladenfleckenkrankheit Botrytis	Bon.1-9	59
Kornertrag	dt/ha	1047
Erntefeuchte	%	264
Tausendkorngewicht	g TM	43
Rohproteingehalt	%	31

Tabelle 15: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Körnererbse. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Jugendentwicklung	Bon.1-9	50
Blühbeginn	Bon.1-9	50
Wuchshöhe	Bon.1-9	50
Reifebonitur früh	Bon.1-9	50
Lagerung	Bon.1-9	50
Kornertrag	dt/ha	50
Erntefeuchte	%	50
Rohproteingehalt	%	26

Tabelle 16: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Weiße Lupine. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Kornertrag	kg/ha	4

Tabelle 17: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Käfer- und Gartenbohnen. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Lagerung	Bon.1-9	24
Reifebonitur	Bon.1-9	24
Kornertrag	dt/ha	24

2.5.3 KARTOFFEL

Tabelle 18: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Kartoffel. Die Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen.

Test	Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
Nematoden	Nematoden Test I		756
Test	Nematoden Test II		756
	Form Nr	Bon. 1-9	756
	Form		866
	Augen Nr	Bon. 1-9	756
77 11 1 1 1	Augen		866
Knollenbeschreibung Aufarbeitung	Größe Nr	Bon. 1-9	756
Einzelstauden zu 8er	Größe		866
	Schalenfarbe		756
	Stärke	%	162
	Anmerkung		18
	Klonen Anbau	Bon. 1-9	756
NL	Knollen/Glashaus	n	756
Feld Bereinigung 8er	Bemerkung		18
	Knollenform 8er		756
	Formschönheit 8er	Bon. 1-9	756
	Größe 8er	Bon. 1-9	756
	Ansatz 8er	Bon. 1-9	756
	Sortierung 8er	Bon. 1-9	756
IZ 11 1 1 1 1	Schale 8er	Bon. 1-9	756
Knollenbeschreibung am Feld bei Ernte	Schalenfarbe 8er	Bon. 1-9	756
	Augen 8er	Bon. 1-9	756
	Fleischfarbe 8er	Bon. 1-9	754
	Partie 8er	Bon. 1-9	754
	Knollenbeschreibung Bemerkung 8er		74
	KN Vermehrung		756
TZ., 11 1	MM		756
Knollenanbau	MN		756
	Stärke2	%	756
	Aufgang	Bon. 1-9	1421
Feldbonitur	Entwicklung	Bon. 1-9	1310
	Fehlstellen	Bon. 1-9	90

Test	Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
	MO Stk.	n	201
	BR Stk.	n	54
	Fadenkeimer Stk.	n	70
	Erwinia Stk.	n	6
	RHI Stk.	n	9
	Phytophthora 1	Bon. 1-9	95
	Phytophthora 2	Bon. 1-9	262
	Phytophthora 3	Bon. 1-9	113
	Alternaria 1	Bon. 1-9	4
	Stolbur	n	10
	Staudentyp		457
	Staudentyp Note	Bon. 1-9	456
	Staudenhöhe	Bon. 1-9	456
	Stängelwuchs		456
	Stängelfarbe	Bon. 1-9	456
	Standfestigkeit	Bon. 1-9	456
	Blattgröße		456
	Blattfarbe		457
	Blütenzahl	Bon. 1-9	455
	Blütenfarbe		330
	Beerenansatz	ja/nein	1
	Reife	Bon. 1-9	1159
	Bemerkung Feldbonitur		80
	Knollengröße	Bon. 1-9	291
	Ansatz	Bon. 1-9	291
Sommer-	Sortierung reg.	Bon. 1-9	291
knollenbonitur	Bemerkung Sommerknollenbonitur		33
	Knollenform		817
	Formschönheit	Bon. 1-9	817
	Knollengröße2	Bon. 1-9	817
	Sortierung	Bon. 1-9	817
	Schalenfarbe2		817
Knollenbonitur	Schalenbeschaffenheit	Bon. 1-9	817
	Augenlage	Bon. 1-9	816
	Schorf	Bon. 1-9	48
	Silberschorf	Bon. 1-9	82
	Rhizoctonia	Bon. 1-9	218
	Durchwuchs	Bon. 1-9	52
	Wachstumsrisse	Bon. 1-9	25
	Partie-Eindruck	Bon. 1-9	814

Test	Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
	Fleischfarbe	Bon. 1-9	815
	Innenfehler		24
	Fäulnis	Bon. 1-9	22
	Bemerkung Knollenbonitur		402
	Kochtyp	A,B,C	436
	Fleischfarbe2	Bon. 1-9	436
	Graugrüne Beifärbung	Bon. 1-9	437
	Farbreinheit	Bon. 1-9	436
	Zerkochen	Bon. 1-9	437
	Konsistenz	Bon. 1-9	436
	Struktur	Bon. 1-9	436
	Feuchtigkeit	Bon. 1-9	436
Speise-Chips-Fritesprüfung	Geschmack	Bon. 1-9	435
T TPo T THOOPINIONS	Verfärbung	Bon. 1-9	435
	Frites vorgeb.	Bon. 1-9	38
	Frites ausgeb.	Bon. 1-9	38
	-		
	Chips	Bon. 1-9	29
	ACA Gehalt		7
	Rohbreiverfärbung		398
	Bemerkung Speiseprüfung		73
	Knollen Anzahl	n	553
	Parzellenertrag	kg	1362
	Rel. Ertrag	%	1416
Ertrag	Ertrag	t/ha	1416
	Staudengewicht pro Wiederholung	kg	1416
	Stärke	%	1015
01	Stärkeertrag	t/ha	1421
Stärke	Rel. Stärkeertrag	%	1421
	Knollen	n	44
	BR positiv	n	40
	BR %	%	40
	Y positiv	n	40
	Y %	%	40
Virustestung	A %	%	40
	M positiv	n	44
	M %	%	40
	X %	%	40
	S %	%	40

Test	Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
	Krebsprüfung-Datum	Datum	32
Krebs- und Nematodenprüfung	D1 Pathotyp resistent/anfällig		32
- · · · · · · · · · · · · · · · · · · ·	Nematodenprüfung Datum	Datum	15
	Pathotyp		15
	Größe8	Bon. 1-9	756
	Form9	Bon. 1-9	34
	Stärke der Anthocyanfärbung des Unterteils	Bon. 1-9	34
	Blauanteil der Anthocyanfärbung des Unterteils	Bon. 1-9	34
	Behaarung des Unterteils	Bon. 1-9	34
Keimbeschreibung	Größe des Oberteils im Verhältnis z. Unterteil	Bon. 1-9	34
	Wuchsform des Oberteils	Bon. 1-9	34
	Anthocyanfärbung des Oberteils	Bon. 1-9	34
	Behaarung des Oberteils	Bon. 1-9	34
	Anzahl der Wurzelhöcker	Bon. 1-9	34
	Länge der Seitentriebe	Bon. 1-9	34
	Umrissgröße	Bon. 1-9	34
	Offenheit	Bon. 1-9	34
Blatt- und	Vorhandensein von sekundären Blattfiedern	Bon. 1-9	34
Blütenbeschreibung	Grünfärbung	Bon. 1-9	34
	Anthocyanfärbung an der Mittelrippe der Oberseite	Bon. 1-9	34

Test	Parameter	Einheit	Bonituren / Anzahl erhobener Werte 2022
	Zweites Paar Seitenblattfiedern: Breite im Verhältnis zur Länge	Bon. 1-9	34
	End- u. Seitenblattfiedern: Häufigkeit von Verwachsungen	Bon. 1-9	34
	Blütenknospe: Anthocyanfärbung	Bon. 1-9	34
	Pflanze: Häufigkeit von Blüten	Bon. 1-9	34
	Blütenstand: Größe	Bon. 1-9	34
	Blütenstand: Anthocyanfärbung am Stiel	Bon. 1-9	34
	Blütenkrone: Größe	Bon. 1-9	34
	Blütenkrone: Intensität der Anthocyanfärbung der Innenseite	Bon. 1-9	34
	Blütenkrone: Blauanteil der Anthocyanfärbung an der Innenseite		34
	Blütenkrone: Ausdehnung der Anthocyanfärbung an der Innenseite	Bon. 1-9	34

2.6 VORVERSUCH ZUR ADAPTION DER BESCHREIBENDEN SORTENLISTE

Bei der zukünftigen Zulassung klimafitter Sorten in Österreich ist eine Leistungsbeurteilung unter Hitzeeinwirkung und Trockenheitsstress für die Landwirt:innen von großem Nutzen. Dazu sind Sortenprüfungen auf Standorten mit zu erwarteten Trockenstress ein realisierbarer Ansatz. Weitere Informationen liefern Leistungsfeststellungen unter Beregnungseinsatz. Hierzu wurden bereits im ersten KLIMAFIT 2 Projektjahr 2021 Vorversuche für eine Anpassung in der Darstellung der Leistung neuer Sorten im Hinblick auf Trockenstresstoleranz durchgeführt. Eigens geplante und angelegte Feldversuche bei Sojabohne und Winterweizen zur Einschätzung einer zuverlässigen Überprüfung von Sorten und Wertprüfungskandidaten hinsichtlich ihrer Reaktion auf Trockenstress lieferten hierfür grundlegende Erkenntnisse. Insbesondere die in 2021 beim Sojabohnen Versuch im Feld durchgeführten Bonituren und Messungen (Reihenschluss, Wuchshöhe, Blattmasse) sowie die anschließend erhobenen Ertragsparameter (Kornertrag, Rohproteingehalt, Tausendkorngewicht, etc.) erlaubten eine erste Einschätzung des Verhaltens und die Leistungsfeststellung verschiedener Sojabohnen Sorten und Sortenkandidaten unter Trockenstressund Normalbedingungen, bzw. ermöglichten eine erste Einstufung hinsichtlich Ertragsstabilität.

Die ersten Ergebnisse der in 2021 durchgeführten Versuche waren vielversprechend, deutliche Sortenunterschiede hinsichtlich der Ertragsstabilität unter beregneten / unberegneten Bedingungen waren feststellbar. Die genauen Ergebnisse der Vorversuche sind im ersten technischen Zwischenbericht respektive im ersten publizierbaren Zwischenbericht nachzulesen. Wie damals bereits diskutiert, sind bei einem einjährigen Versuch gewisse Einschränkungen zu berücksichtigen: Sind die Ergebnisse reproduzierbar, insbesondere unter anderen Umweltbedingungen, wie z. B. einer Vegetationsperiode mit erhöhten Niederschlägen ohne relevanten Trockenstress, und welche Erkenntnisse haben den höchsten Nutzen für eine Veröffentlichung in der beschreibenden Sortenliste? Aus diesem Grund wurden im zweiten Projektjahr 2022 erneut Feldversuche mit Sojabohne und Winterweizen unter beregneten und unberegneten Bedingungen durchgeführt.

Der Soja Feldversuch wurde am 09.05.2022 an der AGES Referenzstation Pannonikum Fuchsenbigl angelegt. Dabei wurden insgesamt 30 teilweise zugelassene und etablierte Sorten, teilweise neuregistrierte Sorten bzw. Sortenkandidaten der Reifegruppe 00 (frühreif, besonders für den pannonischen Raum geeignet) randomisiert angebaut. In je vierfacher Wiederholung erfolgte entweder eine bei Bedarf durchgeführte künstliche Bewässerung, oder keine Bewässerung, um das Verhalten der Sorten unter Trockenstress-Bedingungen und unter bewässerten Bedingungen an einem Standort erheben zu können (Abbildung 6). Die Versuchsparzellen wurden in vier Reihen mit einem Reihenabstand von 39 cm ausgesät. Insgesamt wurden am Standort 240 Soja-Versuchsparzellen angelegt. Die Bewässerung der beregneten Parzellen wurde mittels einer mobilen Beregnungsanlage durchgeführt. Am 20.06. und am 05.07. wurden die beregneten Versuchsparzellen mit je 25 mm/m², am 23.07. mit 50 mm/m² und am 17.08.2022 mit 30 mm/m² bewässert. Am Ende der Vegetationsperiode am 17.10. 2022 wurden die Parzellen mit einem Parzellenernter geerntet und die für Sojabohne relevanten Ertragsparameter und Qualitäten erhoben.

		A Bere		B Bere		B Unb
		egnet		egnet		eregnet
S 1		Sortenkandidat	6	RGT Satelia	6	Sortenkandidat
2	2	P005A74	11		11	
3	So :	Sortenkandidat	16		16	P005A74
4 5		Altona	21 2	Sortenkandidat	21 2	Sortenkandidat
		TSatelia	6 1	Sortenkandidat	6 1	Sortenkandidat
7		Sortenkandidat	12	Sortenkandidat	12	Sortenkandidat
8 8		Annabella	17	Delphi PZO	17	Sortenkandidat
		Sortenkandidat	22	Sortenkandidat	22	Sonali
9 10		Sortenkandidat	27		27	Acardia
S 1	S.	Sonali	2 :		2	Sortenkandidat
S 1	8	Sortenkandidat	18	Sortenkandidat	18	Sortenkandidat
S 3	8	Sortenkandidat	7 2		7 2	Sortenkandidat
		esta	3 2		23 2	Sortenkandidat
		acama	28		28	Sortenkandidat
16	Ac	Acardia	3		3	Altona
		Delphi PZO	8		8	Sortenkandidat
ь 18		Sortenkandidat	13		13	Sortenkandidat
		Sortenkandidat	24	Sortenkandidat	24	Sortenkandidat
		Sortenkandidat	29	Sortenkandidat	29	Sortenkandidat
ро 21		Sortenkandidat	25		25	Supernova
		Sortenkandidat	10	Sortenkandidat	10	RGT Satelia
Sor 23	Sort	Sortenkandidat	5	Sortenkandidat	5	Sortenkandidat
Pos 24	Sort	Sortenkandidat	20	Sortenkandidat	20	Alvesta
25	Sup	Supernova	15	Atacama	15	Sortenkandidat
		Sortenkandidat	5 3	Sortenbandidat	3	Atacama
		Cortenbandidat) 1	0	1	Cortonbandidat
		- Included	9 1		9 1	Control dide
		Sorrenkandar	4		4	Sortenkandadı
		Sortenkandidat	9	Sortenkandidat	9	Annabella
So.		Sortenkandidat	4	Altona	4	Delphi PZO
		Sortenkandidat	8	Annabella	8	Sortenkandidat
		Supernova	24	Sortenkandidat	24	Sortenkandidat
		Sortenkandidat	13	Sortenkandidat	13	Sortenkandidat
		Sortenkandidat	29	Sortenkandidat	29	Sortenkandidat
		Sortenkandidat	3		3	Altona
		Delphi PZO	11		11	Sortenkandidat
		tenkandidat	21	Sortenkandidat	21	Sortenkandidat
		Acardia	6	RGT Satelia	6	Sortenkandidat
		Sortenkandidat	26		26	Sortenkandidat
		Sortenkandidat	16		16	P005A74
		Sortenkandidat	7		7	Sortenkandidat
		Sortenkandidat	2:		2	Sortenkandidat
2		Sortenkandidat	3 2		3 2	Sortenkandidat
		Cortenbandidat	2	Cortonbandidat	2	Sortenbandidat
0 2		- The second sec	8 1	Controller did at	8 1	Contemporation of
7 (3 2	reinandad	8 1	Solicalisalidade	8 1	Solitering Industry
2 3	2 .	NOI Satella	0 2	Sortenkandad	0 2	NGI SALEHA
0 3	io i	Sortenkandidat	0 !	Sortenkandidat	0 !	Alvesta
		Softenkandat	5 2		5 2	Sortenkandidat
0 8		Sortenkandidat	5 1	Supernova	5 1	Separation
		Aborta	5 9		5 9	Appropriate
4 1		Aivesta) 1) 1	Annabella
		Soltelikalididat	9 4		9 4	Solice Indianal
		ali	30		30	Atacama
		Cortonbookship) 1) 1	Corton landalan
		Sortenkandidat	4 1		4 1	Sortenkandidat
1 4		Solicinalidad	2 2		2 2	Sortelinging
		Olla	2	DOLG INGINATION OF	2	Solidii
		PUUSA/4	1 2		1 2	Sorrenkandidat
		renkandidat	:7 :	Softering	7 :	Acardia
S 3		Sortenkandidat	17	Delphi P	17	Sortenkandidat
		C Beregnet		D Beregnet		D Unberegr
						net

Abbildung 6: Versuchsplan des im zweiten Projektjahr 2022 angelegten Soja-Feldversuches

Am selben AGES Versuchsstandort wurde in 2021 sowie auch in 2022 ein Winterweizen Versuch angelegt, in dem die Pflanzen hinsichtlich des Feststellens einer möglichen sortentypischen Reaktion auf Trockenstress im Vergleich zu bewässerten Bedingungen getestet wurden. In 2021 wurden 29 teilweise zugelassene und etablierte Sorten, teilweise neuregistrierte Sorten bzw. Sortenkandidaten vierfach wiederholt randomisiert angeordnet, wobei das selbe Sortiment einmal beregnet, und einmal nicht beregnet wurde. Der gesamte Versuch bestand also aus 232 einzelnen Versuchsparzellen (Abbildung 7). Die Aussaat des 2021 analysierten Versuches erfolgte am 28.12.2020, das Material wurde am 16.07.2021 geerntet.

A Unberegnet	Sortenkandidat	Energo	Capo	Bernstein		Sorte	Sortenkandidat	Sortenkandidat	Sortenkandidat	ñ	Sortenkandi	Sortenkan	Midas	Em	Emilio	Sortenkandidat	Sortenkand	Axa	Ekonom	Monaco	Activ	Slegfried		Sortenkandidat	Artin	Sorte	Ekonom	Siegfried	Activus	Monaco		Sor		Sorter	Sortenkandidat	Artiu	Christop	Sortenkan	Sortenkandi	Sortenkan	Sortenkan	Sortenkandidat	Sortenk	Sortenkandidat	Midas		Sortenk	Sortenkandidat		Be	రి	C Unberegnet
	1	2	3 4	- 5	6	7	8	9 1	10 1	1 1	2 13	14	15	16	17	18 1	9 2	0 21	. 22		24	25 2	6 27	28	29	30	22 2	25 2	1 24	23	17	19 1	6 18	20	28	29	26 3	0 27	6	9	7 :	10 8	3 14	1 12	2 15	11	13	1 4	4 2	5	3	
A Beregnet	Sortenkandidat	Aurelius	Emilio	Bemstein	Energo	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	das	Sortenkandidat		Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Monaco	Sortenkandidat	Sorte	Ä	Siegfried		Artimus	Sortenkandidat	Christoph	Sortenkandidat	Siegfried	Axaro	Sortenkandidat	Sortenkan	Sortenkan	Sortenkandidat	Sortenkan	Artimus	Sortenkandidat	Activus			Sortenkandidat	Sortenkandidat	Sortenkandidat	Cano	Sortenkandidat	Sortenkandidat	lidas	Sortenkandidat	Sortenkandidat	Aurelius	Bernstein	Emilio	C Beregnet
	1	2	3 4	5	6	7	8	9 1	10 1	1 1	2 13	14	15	16	17	18 1	9 2	0 21	. 22	23	24	25 2	6 27	28	29	30	22 2	25 2	1 24	23	17	19 1	6 18	20	28	29	26 3	0 27	6	9	7 :	10 8	3 14	1 12	2 15	11	13	1 4	4 2	5	3	
B Beregnet	Sortenkandidat	Midas	Sortenkandidat	3 3	Sortenkandidat	ıkar	Sortenkandidat	Sortenkandidat	Ekonom	sn s	Sortenkandidat	-kan	Sn	oli.	Sortenkandidat	Sortenkandidat	A xaro	Siegfried	Sortenkandidat		rtenkandi	Sortenkandidat		Саро	Sortenkandidat	ŧⅡ	Sortenkandidat	Axaro	Sortenkandidat	Emilio	Midas	aco .	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Aurelius	Sortenkandidat	enkan	orte	Bernstein	Siegfried	Sortenkandidat	Sortenkandidat		Christoph	Саро	Sortenkandidat	Sortenkandidat	mouc	Sortenkandidat	D Beregnet
	6	11	16 2	1 26	1			22 2	27 2	2 1	8 7	23			8	13 2	4 2	9 25	10	5	20	15 3	0 19	14	9		8 2	24 1	3 29			21	6 26	16	7	23	2 2	8 18	10	20	5 2	25 1	5 9	19	9 4	30		12 2			17	
B Unberegnet	Sortenkandidat	Sortenkandidat	Emilio	Christoph	Sortenkandidat	Sortenkandidat	Emilio	Ekonom	Sortenkandidat	80 Survivo	Sortenkandidat		Sortenkandidat		Sortenkandidat	Sortenkandidat	Activus	fried	tenkandidat	Bernstein	Aurelius	Midas	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Activus	Artimus	Capo	Sortenkandidat	Axaro	Sortenkandidat	Emilio	Sortenkandidat	Monaco	Energo		Sortenkandidat	Aurelius		Slegfried	Sortenkandidat	Sortenkandidat	rtenkandid	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	1 1	D Unberegnet
	6	11	16 2	1 26	1	12	17	22 2	27 2	2 1	8 7	23	28	3	8	13 2	4 2	9 25	10	5	20	15 3	0 19	14	9	4	8 2	24 1	3 29	3	11	21	6 26	16	7	23	2 2	8 18	10	20	5 2	25 1	5 9	19	9 4	30	14	12 2	2 1	27	17	

Abbildung 7: Versuchsplan des im ersten Projektjahr 2021 geernteten Winterweizen-Feldversuches

Im Jahr darauf (2022) wurden 25 teilweise zugelassene und etablierte Sorten, teilweise neuregistrierte Sorten bzw. Sortenkandidaten nach ähnlichem Muster angebaut, wobei auch hier wieder das gesamte Sortiment jeweils randomisiert in vierfacher Wiederholung sowohl beregnet als auch unberegnet angelegt wurde. Die Versuchsgröße belief sich also auf 200 Parzellen (Abbildung 8). 14 Sorten und Sortenkandidaten, welche in 2021 angebaut wurden, wurden im darauffolgenden Jahr 2022 wieder in den neu angelegten Versuch gestellt, um eine Mehrjährigkeit der Daten zu erzielen. Die Aussaat des 2022 analysierten Versuches wurde am 19.10.2021 durchgeführt, hier erfolgte die Ernte am 12.07.2022.

Wie schon beim Soja Versuch erfolgte auch im Winterweizen Versuch in beiden Jahren eine bedarfsgerechte Bewässerung der beregneten Versuchsparzellen. Im 2021 geernteten Versuch wurden die beregneten Versuchsparzellen mit je 35 mm/m² am 07.05., am 09.06. und am 25.06. bewässert. Im 2022 geernteten Versuch wurden die beregneten Versuchsparzellen mit 40 mm/m² am 24.03., mit 25 mm/m² am 06.05. und mit 20 mm/m² am 24.06.2022 bewässert. Am Ende der beiden Vegetationsperioden wurde der Ertrag jeder Parzelle mit Hilfe eines Parzellenernters erhoben. Danach erfolgte die Ermittlung der Qualitäten (Rohproteingehalt, Wassergehalt, etc.).

A Unberegne	t	Sortenkandidat	Capo	Sortenkandidat	Energo	Bernstein	Sortenkandidat	Axaro	Sortenkandidat	Monaco	Aurelius	Activus	Sortenkandidat	Sortenkandidat	Artimus	Sortenkandidat	Ekonom	Christoph	Energo	Sortenkandidat	Bernstein	Axaro	Sortenkandidat	Sortenkandidat	Christoph	Artimus	Ekonom	Sortenkandidat	Aurelius	Monaco	Activus	Sortenkandidat	Codes	Unberegnet														
	1	1 2	3	4	5	6	7	8	9	10	11	12	13	14 1	5 16	17	18	19	20	21	22	23	24 2	25	11 1	13 1	2 1	4 1	5 2	1 23	25	22	24	16	18 2	0 17	19	1	4	3	2	5	6	8	10	7 9	9	
A Beregnet	Sortenkandidat	Bernstein	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Energo	Sortenkandidat	Sortenkandidat	Capo	Sortenkandidat	Sortenkandidat	Sortenkandidat	Axaro	Artimus	Monaco	Aurelius	Christoph	Sortenkandidat	Sortenkandidat	Ekonom	Activus	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Axaro	Sortenkandidat	Activus	Sortenkandidat	Ekonom	Sortenkandidat	Artimus	Aurelius	Monaco	Christoph	Sortenkandidat	Sortenkandidat	Sortenkandidat	Bernstein	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	201 CELINGING	C Beregnet
	1	1 2	3	4	5	6	7	8	9	10	11	12	13	14 1	5 16	17	18	19	20	21	22	23	24 2	25	11 1	13 1	2 1	4 1	5 2	23	25	22	24	16	18 2	0 17	19	1	4	3	2	5	6	8	10	7 9)	
B Beregnet	Sortenkandidat	Sortenkandidat	Sortenkandidat	Aurelius	Activus	Sortenkandidat	Artimus	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Axaro	Sortenkandidat	Christoph	Sortenkandidat	Sortenkandidat	Midas	Sortenkandidat	Sortenkandidat	Bernstein	Energo	Sortenkandidat	Monaco	Ekonom	Sortenkandidat	Midas	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Activus	Aurelius	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Bernstein	Sortenkandidat	Ekonom	Energo	Monaco	Sortenkandidat	Sortenkandidat	Sortenkandidat	Axaro	indoseiii a	D Beregnet
	3	8 8	13	18	23	1	16	11	6	21	4	14	9	19 2	4 5	10	15	20	25	2	7	12	17 2	22	25 1	15	5 2	0 1	0 3	13	23	18	8	1	6 1	6 11	. 21	. 2	12	22	7	17	4	9	24 1	14 1	9	
B Unberegne	t dortondidat	Sortenkandidat	Sortenkandidat	Aurelius	Sortenkandidat	Sortenkandidat	Sortenkandidat	Energo	Sortenkandidat	Sortenkandidat	Sortenkandidat	Axaro	Саро	Activus	Sortenkandidat	Sortenkandidat	Midas	Sortenkandidat	Christoph	Sortenkandidat	Sortenkandidat	Bernstein	Monaco	Artimus	Christoph	Midas	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Sortenkandidat	Aurelius	Sortenkandidat	Sortenkandidat	Sortenkandidat	Energo	Sortenkandidat	Sortenkandidat	Bernstein	Artimus	Sortenkandidat	Monaco	Sortenkandidat	Саро	Ekonom	Axaro		Unberegnet
	3	8	13	18	23	1	16	11	6	21	4	14	9	19 2	4 5	10	15	20	25	2	7	12	17 2	22	25 1	15 !	5 2	0 1	0 3	13	23	18	8	1	6 1	6 11	. 21	. 2	12	22	7	17	4	9	24 1	14 1	9	

Abbildung 8: Versuchsplan des im zweiten Projektjahr 2022 geernteten Winterweizen-Feldversuches

Beide Versuche, Winterweizen und Soja, wurden in 2022 zusätzlich mit Hilfe einer Drohne analysiert, um etwaige Sortenunterschiede unter Trockenstress- und Normalbedingungen zu erheben. Der Winterweizen-Versuch wurde zweimal mit einer Drohne beflogen, am 16. Juni 2022, zum Zeitpunkt des Ährenschiebens, und am 07. Juli 2022, kurz vor der Ernte. Der Soja-Versuch wurde einmal am 07. Juli 2022, kurz vor der Blüte, beflogen. Anhand der Aufnahmen der Multispektral Kamera lassen sich mehrere Indizes ableiten, die die Pflanzenentwicklung beschreiben (NDVI, WDVI, Bodenbedeckungsgrad, etc.). Die Drohnenflüge wurden durch den Dienstleister Blickwinkel Agrarconsulting durchgeführt, und werden in 2023 in ähnlichem Versuchsdesign wiederholt.

2.7 GENOTYP X UMWELT INTERAKTIONSVERSUCH

Das primäre Ziel des durchgeführten Versuchs ist es, die Interaktion von Genotyp und Umwelt für das Merkmal Ertrag zu untersuchen und zu quantifizieren. Eine Interaktion zwischen Genotyp und Umwelt liegt vor, wenn sich die Rangreihung im Ertrag der Genotypen an verschiedenen Umwelten ändert. Es herrscht keine Interaktion zwischen Genotyp und Umwelt, wenn die Genotypen in allen Umwelten gleich reagieren. Mit unserem Versuch werden Genotypen, die durch hohe Ertragsstabilität, also hohen Ertrag über mehrere Umwelten hinweg, charakterisiert sind, identifiziert. Das Ziel ist auch, die Ertragsstabilität der verschiedenen Genotypen mit Hilfe von Stabilitätsindizes darzustellen. Außerdem wurden die Standorte charakterisiert und abweichende Standorte werden identifiziert. Im zweiten KLIMAFIT 2 Projektjahr wurde die Genotyp x Umwelt Interaktion für Winterweizen im Versuch Ost evaluiert.

2.7.1 VERSUCHSAUFBAU

Für den Genotyp x Umwelt Interaktionsversuch konnte auf Daten von KLIMAFIT 1 und KLIMAFIT 2 zurückgegriffen werden. Folglich wurden insgesamt 13 Winterweizen Genotypen (10 Zuchtlinien und 3 Sorten) über fünf Jahre hinweg an 14 verschiedenen Standorten sowohl in Österreich als auch im europäischen Ausland (Frankreich, Ungarn, Rumänien, Slowakei und Bulgarien) angebaut und auf ihren Ertrag untersucht. Manche der Standorte, wie Gerhaus (AT), Staasdorf (AT), Szekkutas (HU) und Weikendorf (AT), sind schon lang etablierte Versuchsstandorte, die in allen fünf Versuchsjahren berücksichtigt wurden. Andere Standorte wurden je nach Bedarf ergänzt, um eine hohe Variabilität in den Umweltbedingungen zu gewährleisten. Während 2018 6 Standorte genutzt wurden, wurden 2019, 2020 und 2021 jeweils 8 Standorte und 2022 10 Standorte untersucht. So wurden über die gesamte Versuchsdauer insgesamt 40 verschiedene Umwelten berücksichtigt (Tabelle 19). Über alle Jahre hinweg wurden insgesamt 13 verschiedene Genotypen angebaut. Der Genotypensatz bestand aus 7 Genotypen in 2018, jeweils 11 Genotypen in 2019 und 2021, 12 Genotypen in 2020 und 9 Genotypen in 2022. Die Sorten *Artimus* und *Aurelius* sowie die Zuchtlinien S_OST1 und S_OST5 waren in allen Umwelten vertreten. Die übrigen Zuchtlinien und Sorten wurden nur an ausgewählten Umwelten berücksichtigt.

Tabelle 19: Übersicht der verschiedenen Umwelten im Genotyp x Umwelt Interaktionsversuches vom Winterweizen. Trockenstress-Intensität; 1 = hoch, 2 = mittel, 3 = niedrig, 4 = kein Trockenstress

Standorte	Standorte	PZL	Land	2018	2019	2020	2021	2022	Trockenstress- bewertung in 2022	Summe an Versuchen
AMA	St. Amand	41190	FR					X	3	1
CEG	Cegléd	5062	HU				X	X	1	2
DOB	Dobric	9300	BG	X	X	X	X		2	4
GER	Gerhaus	2471	AT	X	X	X	X	X	2	5
JAN	Janzé	35150	FR					X	3	1
SCA	Scanteia	927210	RO		X			X	2	2
STA	Staasdorf	3430	AT	X	X	X	X	X	3	5
SZA	Szajol	5081	HU		X				1	1
SZE	Szekkutas	6621	HU	X	X	X	X	X	1	5
SZO	Szolnok	5001	HU	X					1	1
URZ	Urziceny	927077	RO			X		X	1	2
VIG	Viglas	96202	SK		X	X	X	X	3	4
WEI	Weikendorf	2042	AT	X	X	X	X	X	2	5
WEI_SPÄT	Weikendorf späte Aussaat	2042	AT			X	X		2	2
Summe an Standorten				6	8	8	8	10		40

2.7.2 DATENAUSWERTUNG

Das R Paket statgenGxE (van Rossum, 2022) wurde für die Untersuchung der Genotyp x Umwelt Interaktion genutzt.

Mit der Finlay-Wilkinson-Analyse (Finlay and Wilkonson, 1963) kann die Interaktion zwischen Genotyp und Umwelt anhand der Heterogenität der Steigungen der Regression der individuellen genotypischen Leistung auf einen Umweltindex (der Durchschnitt aller Genotypen in einer Umwelt) beschrieben werden. Der Achsenabschnitt drückt die allgemeine Leistung in allen Umgebungen aus, die Steigung steht für die Anpassungsfähigkeit, und die Residuen können als Maßzahl für die Stabilität genommen werden.

Das Modell der additiven Haupteffekte und multiplikativen Interaktion (AMMI) entspricht einem Modell, das die additiven Haupteffekte (d. h. Genotyp und Versuch) zusammen mit multiplikativen Interaktionseffekten umfasst. Die additiven Effekte sind die klassischen ANOVA-Haupteffekte für Genotyp und Umwelt, die multiplikativen Effekte ergeben sich aus einer Hauptkomponentenanalyse der Interaktionsresiduen (= Mittelwerte von Genotyp und Umwelt nach Anpassung für additive Genotyp- und Umwelteffekte). Da in unserem Versuch nicht alle Genotypen in allen Umwelten angebaut wurden, wurden die fehlenden Ertragswerte mit Hilfe eines iterativen Regressionsalgorithmus ersetzt. Dieser Algorithmus regressiert nacheinander jede Umwelt auf alle anderen. Dieser Vorgang wird so lange wiederholt, bis die Differenz zwischen den angepassten Werten in den nachfolgenden Iterationen hinreichend klein wird. Im Biplot liegen Genotypen, die einander ähnlich sind, näher beieinander als Genotypen, die sich unterscheiden. Gleiches gilt auch für die Umwelten. Wenn die Umwelt-Hauptkomponenten mit dem Ursprung des Diagramms verbunden sind, zeigt ein spitzer Winkel zwischen den Linien eine positive Korrelation zwischen den Umwelten an. Ein rechter Winkel zwischen den Linien weist auf eine geringe oder keine Korrelation zwischen den Umwelten hin, und ein stumpfer Winkel bedeutet eine negative Korrelation. Die Projektion eines Genotyps auf die Umweltachse spiegelt die Leistung in dieser bestimmten Umwelt wider.

Für die Berechnung der Mega-Umwelten wird ein AMMI-Modell angepasst, anschließend werden die Umwelten anhand der Werte dieses Modells geclustert. Mega-Umwelten werden erstellt, indem die Umwelten auf Basis ihres leistungsstärksten Genotyps gruppiert werden. Umwelten, die den gleichen besten Genotyp aufweisen, gehören zur gleichen Mega-Umwelt.

Im Zuge der Auswertung des Genotyp x Umwelt Interaktionsversuches wurden verschiedene Stabilitäts-Indizes berechnet. Der Cultivar-Superiority Measure (Lin and Binns, 1988) entspricht der der Summe der Quadrate der Differenz zwischen dem Mittelwert der Genotypen in jeder Umwelt und dem Mittelwert des besten Genotyps, geteilt durch die doppelte Anzahl der Umwelten. Genotypen mit den kleinsten Werten der Superiority sind tendenziell stabiler und liegen näher am besten Genotyp in jeder Umwelt. Der Static Stability Coefficient beschreibt die Varianz zwischen seinem Mittelwert in den verschiedenen Umgebungen. Er liefert ein Maß für die Beständigkeit des Genotyps, ohne die Leistung zu berücksichtigen. Der Wricke's Ecovalence Stability Coefficient (Wricke, 1962) stellt den Beitrag jedes Genotyps zur Summe der Quadrate einer ungewichteten Genotyp x Umwelt-Interaktion-Analyse dar. Ein niedriger Wert deutet darauf hin, dass der Genotyp in konsistenter Weise auf Veränderungen der Umwelt reagiert.

2.8 STATISTISCHE AUSWERTUNG

Die in diesem Zwischenbericht wiedergegebenen Ergebnisse (Abschnitt 3) basieren auf den Daten welche von den unterschiedlichen, am Projekt beteiligten Züchtungsunternehmen in den Parzellenversuchen erhoben worden sind. Die gemeinsamen Richtlinien für die Datenerhebung und die Datenübermittelung wurden gemeinschaftlich bei einem eintägigen Workshop ausgearbeitet und definiert. Die Datenübermittelung an die AGES GmbH erfolgte als *Excel*-Datei, zumeist in Form der Datensheet-Vorlage, die die AGES GmbH im November 2022 per Mail ausgeteilt hatte. Den Züchtungsunternehmen war es freigestellt, ob sie die Daten als adjustierte Einzelwerte pro Parzelle oder als adjustierte Mittelwerte für jede Zuchtlinie bzw. Sorte des jeweiligen Versuchs übermitteln. In beiden Fällen kann die AGES GmbH aus den zugesendeten Daten auf die zugrundeliegende Anzahl von Parzellen schließen. In dem Fall der Übermittelung von Mittelwerten war es den Züchtungsunternehmen freigestellt, welches Datenverarbeitungsprogramm sie für die erste Verrechnung der Feldversuche verwendeten, es kamen die Programme *R* (+ *Paket gBLUP*), *Excel* und *PLABSTAT* zur Anwendung. In dem Fall der Einzelwerte hat die AGES GmbH das arithmetische Mittel über alle Parzellen eines Genotyps an einem Versuch berechnet. Es wurden Standardsorten als Brückensorten zwischen Versuchen und Züchtungsunternehmen für alle Kulturarten definiert, um die Ertragsleistungen von allen untersuchten Zuchtlinien einer Kulturart vergleichen zu können.

Im Folgenden sind die Standardsorten angeführt, welche im zweiten Projektjahr 2022 als Brückensorten innerhalb der unterschiedlichen Kulturarten angebaut wurden, und zur statistischen Verrechnung der einzelnen Versuche herangezogen werden konnten.

Getreide

- Sommerweizen: KWS Expectum, KWS Mistral, WPB Troy
- Winterweizen: Activus, Apexus, Aurelius, Chevignon, Capo
- Sommergerste: Amidala, Avus, Leandra, Skyway
- Zweizeilige Wintergerste: Bordeaux, KWS Donau, LG Campus, SU Laubella, Monroe
- Mehrzeilige Wintergerste: Adalina, Journey, KWS Meridian, SU Jule
- Sommerhafer: Earl, Enjoy, Rambo, Platin
- Wintertriticale: Brehat, Claudius, RGT Flickflac, Rivolt
- Winterroggen: KWS Jethro, KWS Receptor, KWS Tayo
- Körnersorghum: Armorik, RT Ggolden, Rosario
- Rispenhirse: Lisa, Kornberger mittelfrühe

Mais

- Silomais: Agrogant, ES Joker, Figaro, LG31223, SY Collosseum
- Reifegruppe früh/mittelfrüh: SY Calo, DKC3623
- Reifegruppe mittelspät/spät: DKC3939, P8834, P9610, DKC5065

Öl- und Eiweißpflanzen

- Sojabohne Reifegruppe I und 0: Angelica, Artesia, DH4173, Ezra
- Sojabohne Reifegruppe 00: Acardia, Annabella, Angelica, Artoga, Atacama, RGT Satelia, Sonali
- Sojabohne Reifegruppe 000 bzw. 000/0000: Abaca, Acardia, Adelfia, Aurelina, Ancagua
- Linienraps: *Harry, Iggy, Randy*
- Hybridraps: Ambassador, Architect, Artemis, Dk Excited, Ludger
- Sonnenblume: ES Columbella, LS Kiwy, P61BB400, P64HE118, P64HE143, Sumiko, SY Bacardi CLP
- Hybrid-Ölkürbis: Beppo, GL Atomic, GL Rudolf, GL Rustikal,
- Frei abblühender Ölkürbis: GL Ruprecht, Gleisdorfer Ölkürbis
- Sommerackerbohne: Alexia

MATERIAL & METHODIK

• Winterackerbohne: GL Alice, GL Arabella

• Körnererbse: Karacter, Tiberius

• Weiße Lupine: Frieda

Käfer- und Gartenbohne: Bonela

• Öllein: Exquise, Lirina

Kartoffel

• Konventioneller Anbau: Afra, Agata, Agostino, Agria, Alexandra, Alicante, Alonso, Andean Sunside, Anosta, Arinda, Armedi, Arnova, Aztec Gold, Bionta, Bosco, Brooke, Chateau, Chiara, Constance, Corinna, Ditta, Donata, Eldena, Erika, Estelle, Euroresa, Eurostarch, Finka, Fontane, Fyone, Georgina, Graziosa, Gunda, Havana, Herbstgold, Hermes, Isabellia, Jelly, Kuras, Larissa, Longinus, Marabel, Mariola, Marizza, Markies, Meireska, Melrose, Napoleon, Nevadina, Nirvana, Otolia, Pepino, Ranomi, Rilana, Salvera, Siegfried, Sixtus, Solara, Stacey, Tosca, Twister, Valdivia, Zuzanna

• Biolandbau: Agria, Alonso, Alouette, Anuschka, Beyonce, Bionta, Bosco, Brooke, Chiara, Constance, Ditta, Eurostarch, Herbstgold, Hermes, Kuras, Longinus, Meryem, Nofy, Otolia, Siegfried, Twister, Valdivia, Zuzanna

Im Allgemeinen wurden zwei Analysen angewandt, um den Effekt von Trockenstress auf die Ertragsleistung der untersuchten Zuchtlinien zu evaluieren. Im ersten Schritt wurde die Ertragsleistung unter Trockenstress-Bedingungen analysiert, wobei diejenigen Versuche als Trockenstress-Versuche gezählt wurden, bei denen die versuchsausführenden Züchter:innen die auf die angebauten Pflanzen einwirkende Trockenstress-Intensität als hoch oder mittel (Stufe 1 und Stufe 2) eingestuft hatten. In einem zweiten Schritt wurde die Ertragsleistung aller Zuchtlinien für Bedingungen analysiert, bei denen Trockenstress nur geringe oder keine Auswirkungen (Trockenstress-Bewertung Stufe 3 und 4) auf die Entwicklung der Kulturpflanzen hatte. Diese Bedingungen spiegeln die regelmäßig beobachteten abiotischen Stressbelastungen wider. Das R Paket emmeans: Estimated Marginal Means, aka Least-Squares Means Version 1.8.5 (Lenth, 2022) wurde genutzt um die jeweils mittlere Ertragsleistung zu berechnen. Diese wurde mit Hilfe einer linearen Regression anhand der Least-Square Means ermittelt, wobei folgendes Fixed-Effects-Modell den Berechnungen zugrunde lag:

$$P_{ij} = \mu + G_i + E_i$$

Dabei ist P_{ij} der phänotypische Wert, μ ist das Gesamtmittel, G_i ist der Effekt des i^{ten} Genotyps und E_j ist der Effekt des j^{ten} Versuchstandortes.

Die unterschiedliche Anzahl an Versuchen wird durch das statistische Modell ausgeglichen, d.h. die Erträge werden jeweils auf die maximale Anzahl an Versuchen "hochgerechnet". Damit sind alle Zuchtlinien und Standardsorten, unabhängig von den jeweiligen Versuchen, vollständig und unverzerrt untereinander vergleichbar.

Die adjustierten Mittelwerte der Zuchtlinien wurden mit dem adjustierten Standardsortenmittel verglichen. Als vielversprechende Zuchtlinien wurden diejenigen ausgewählt, die – unter der Annahme, dass mehr als eine Parzelle an einem Standort untersucht worden war – den höchsten Ertrag sowohl unter als auch ohne Trockenstressbedingungen erwiesen haben. Die besten zehn Zuchtlinien werden dann mit ihren relativen Ertragsleistungen in Bezug auf den mittleren Ertrag der Standardsorten in einem Balkendiagramm dargestellt. Der genaue Ertragswert der ausgewählten Zuchtlinien an jedem Versuch ist dann auch in einer dem Diagramm nachgestellten Tabelle angegeben. Zudem beinhalten die nachfolgenden Tabellen neben den Daten der vielversprechenden Zuchtlinien auch die Daten der Wertprüfungs-Kandidaten des aktuellen Jahres sowie weitere ausgewählte erhobene Parameter sowohl zur Ermittlung der Qualitäten der Zuchtlinien, als auch um ihr Verhalten in der Umwelt festzustellen. Die einzelnen Zuchtlinien sind anonymisiert, um die Geheimhaltung der Daten zu wahren.

3 ERGEBNISSE

3.1 GETREIDE & MAIS

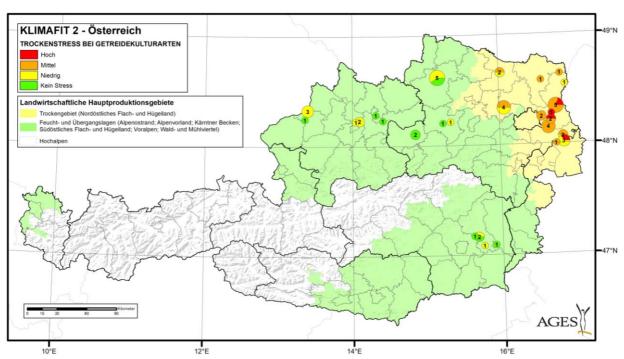


Abbildung 9: Verteilung der einzelnen Versuchsstandorte des zweiten Projektjahres (2022) und der dazugehörigen Trockenstress-Intensität der Standorte an denen Getreidekulturarten angebaut wurden. Eine höhere Auflösung der Karte findet sich im Anhang.

Schon seit mehreren Jahren lässt sich beim Getreideanbau in Österreich vermehrt der Trend weg von den Sommerungen (Sommergerste, Sommerweizen, Sommerhafer) hin zu den Winterungen erkennen. Hier erhofft man sich durch ein Ausnutzen der Winterfeuchtigkeit und durch die längere Vegetationszeit, beginnend nach der Aussaat im Herbst, bis hin zum nächstjährigen Sommer, höhere Erträge und das Vermeidung der Sommertrockenheit. Der Anbau von Winterungen geht dabei schon seit Jahren zu Lasten der Anbauflächen des Sommergetreides.

Ein trockener Herbst 2021 ermöglichte die problemlose Aussaat und Anlage der Versuchsflächen der diverser im Versuch inkludierten Wintergetreide (Winterweizen, Wintergerste, Winterhafer, Wintertriticale, Winterroggen), im Frühjahr 2022 folgten dann die Sommergetreide und Mais nach. Der Winter 2021/2022 war durchwegs zu trocken, die erhoffte Winterfeuchte blieb aus. Regional differenziert setzte dann in den Frühjahrsmonaten Niederschlag ein, vor allem entlang der Donau und im Waldviertel waren die Versuche nicht von hohem Trockenstress geplagt. Demgegenüber waren die vor allem im östlichen Flachland Österreichs, in der Marchfelder Gegend, angelegten Versuche hohem Trockenstress ausgesetzt (Abbildung 9).

3.1.1 WEIZEN

3.1.1.1 <u>Sommerweizen</u>

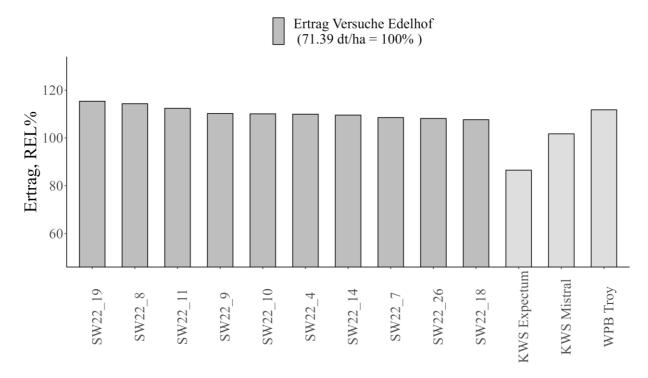


Abbildung 10: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche in Edelhof der zehn im zweiten Projektjahr ertragreichsten Sommerweizen-Zuchtlinien und der Standardsorten KWS Expectum, KWS Mistral und WPB Troy.

Wie einleitend bereits geschrieben ist der Sommerweizenanbau in Österreich aufgrund der in den letzten Jahren vermehrt auftretenden Frühjahrstrockenheit und den Hitzesommern stark rückläufig. Sommerweizen kann jedoch als Ausgleichskultur sinnvoll sein, wenn starke Winterschäden bei den Winterkulturen auftreten, wobei dann natürlich die angebauten Sorten im Idealfall über eine hohe Trockenstress-Toleranz verfügen. Im Rahmen des KLIMAFIT Projektes wird Sommerweizen dennoch sehr untergeordnet bearbeitet, im vergangenen Projektjahr wurde lediglich ein Versuch am Standort Edelhof (bei Zwettl) angelegt. Dieser Versuch war nicht von hohem Trockenstress geprägt, vielmehr wurde in erster Linie hinsichtlich sich bemerkbar machender Resistenzen gegenüber Pflanzenkrankheiten wie Mehltau, Gelbrost, Braunrost, Blattdürre und Ährenfusarium bonitiert (Tabelle 20). Bei diesen Versuchen konnten bereits einige vielversprechende Zuchtlinien beobachtet werden, welche zum einen hinsichtlich ihres Ertrags, aber auch in Bezug auf Krankheitsresistenz vielversprechende Eigenschaften vorwiesen.

Tabelle 20: Ausgewählte erhobene Parameter vielversprechender Sommerweizen-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter zur Feststellung ihres Verhaltens in der Umwelt.

Name	Jahr	Kolben- oder Grannenweizen	Qualitätseinstufung	Biolandbau	Standort	Land	Parzellenanzahl	Kornertrag	da ab Datum Ährenschieben	g Wuchshöhe	Lagerung	Mehltau (ERYSIPHE GRAMINIS)	Gelbrost (PUCC, STRIIFORMIS)	Braunrost (P.TRIT., P. DISP.)	DTR/HTR-Blattdürre	Ährenfusarium (FUSARIUM SP.)	Intensität des Trockenstresses für die Kultur
	_		_			,			1.Jan								
SW22_4	2022	K	M	Nein	Edelhof	ΑT	2	78.5	1.5an 166	113	1.0	1.0	1.0	1.0	3.5	2.5	3
SW22_7								7 8.5		113 110	1.0 2.0	1.0 1.0	1.0 2.5	1.0	3.5 3.0	2.5 3.0	3
	2022	K	M	Nein	Edelhof	AT AT	2	77.5 81.6	166	113 110 118		1.0 1.0 1.0	_				3
SW22_7	2022 2022	K K	M M	Nein Nein	Edelhof Edelhof	AT AT	2	77.5 81.6 78.7	166 162	110	2.0	1.0	2.5	1.0	3.0	3.0	3 3 3
SW22_7 SW22_8 SW22_9 SW22_10	2022 2022 2022 2022 2022	K K K K	M M M	Nein Nein Nein Nein Nein	Edelhof Edelhof Edelhof Edelhof	AT AT AT AT	2 2 2 2 2	77.5 81.6 78.7 78.6	166 162 163 163 163	110 118 115 113	2.0 4.0	1.0 1.0 1.0 1.0	2.5 1.0 2.0 1.0	1.0 1.0	3.0 2.5	3.0 1.5	3 3 3 3
SW22_7 SW22_8 SW22_9 SW22_10 SW22_11	2022 2022 2022 2022 2022 2022	K K K K K	M M M M M	Nein Nein Nein Nein Nein	Edelhof Edelhof Edelhof Edelhof Edelhof	AT AT AT AT AT AT	2 2 2 2 2 2	77.5 81.6 78.7 78.6 80 2	166 162 163 163 163 162	110 118 115 113 118	2.0 4.0 1.0 1.0	1.0 1.0 1.0	2.5 1.0 2.0 1.0 1.0	1.0 1.0 1.0	3.0 2.5	3.0 1.5 1.0	3 3 3 3 3
SW22_7 SW22_8 SW22_9 SW22_10 SW22_11 SW22_14	2022 2022 2022 2022 2022 2022 2022	K K K K K K	M M M M	Nein Nein Nein Nein Nein Nein	Edelhof Edelhof Edelhof Edelhof Edelhof Edelhof	AT AT AT AT AT AT	2 2 2 2 2	77.5 81.6 78.7 78.6 80 2 78.2	166 162 163 163 163 162 163	110 118 115 113 118	2.0 4.0 1.0 1.0	1.0 1.0 1.0 1.0 3.5	2.5 1.0 2.0 1.0	1.0 1.0 1.0 1.0 1.0	3.0 2.5 4.5 4.0	3.0 1.5 1.0	3 3 3 3 3
SW22_7 SW22_8 SW22_9 SW22_10 SW22_11 SW22_14 SW22_18	2022 2022 2022 2022 2022 2022 2022 202	K K K K K K	M M M M M	Nein Nein Nein Nein Nein Nein Nein	Edelhof Edelhof Edelhof Edelhof Edelhof Edelhof Edelhof Edelhof	AT AT AT AT AT AT	2 2 2 2 2 2	77.5 81.6 78.7 78.6 80.2 78.2 76.8	166 162 163 163 163 162 163 170	110 118 115 113 118	2.0 4.0 1.0 1.0	1.0 1.0 1.0 1.0 3.5	2.5 1.0 2.0 1.0 1.0	1.0 1.0 1.0 1.0	3.0 2.5 4.5 4.0 2.5	3.0 1.5 1.0	3 3 3 3 3 3
SW22_7 SW22_8 SW22_9 SW22_10 SW22_11 SW22_14	2022 2022 2022 2022 2022 2022 2022 202	K K K K K K	M M M M M M	Nein Nein Nein Nein Nein Nein Nein Nein	Edelhof Edelhof Edelhof Edelhof Edelhof Edelhof	AT	2 2 2 2 2 2 2 2	77.5 81.6 78.7 78.6 80 2 78.2	166 162 163 163 163 162 163 170 165	110 118 115 113 118	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 3.5	2.5 1.0 2.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	3.0 2.5 4.5 4.0 2.5 3.0	3.0 1.5 1.0 2.0 2.0 2.0	3 3 3 3 3

3.1.1.2 Winterweizen

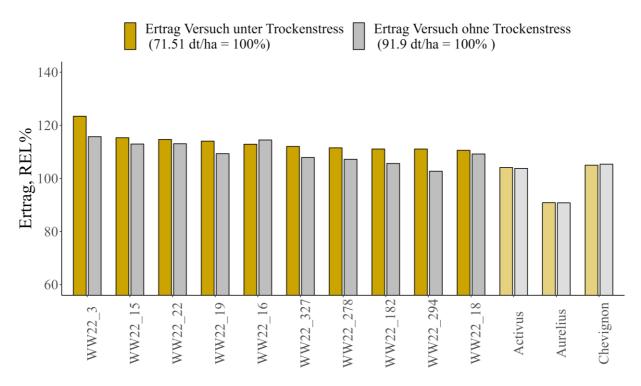


Abbildung 11: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche mit Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn ertragreichsten Winterweizen-Zuchtlinien des zweiten Projektjahres und der Standardsorten Activus, Aurelius und Chevignon.

Der Winterweizen ist die in Österreich bedeutendste Hauptkulturart und zeichnet sich, bedingt durch das Ausnutzen der Winterfeuchte und der längeren Vegetationszeit, durch höhere Erträge gegenüber dem Sommerweizen aus. Im pannonischen Anbaugebiet wird der Großteil der Winterweizen-Anbauflächen für die Produktion von Qualitätsweizen mit hohen Backeigenschaften verwendet, wobei bei Qualitätsweizensorten auch trockenheitsbedingte Ertragsminderungen in Kauf genommen werden. Deshalb liegt ein großer Fokus des Projektes KLIMAFIT bei der Bereitstellung von neuen Winterweizen-Zuchtlinien mit verbesserter Trockenstress-Toleranz und guten Qualitätseigenschaften, welche idealerweise an die Bedingungen im pannonischen Raum angepasst sind.

Bei dieser Kulturart wurden also im zurückliegenden zweiten Projektjahr 2022 eine große Anzahl von Versuchen im In- und Ausland angelegt. An 43 Versuchsstandorten (21 davon in Österreich, 22 davon im europäischen Ausland) wurden die Zuchtlinien in insgesamt 125 Versuche gestellt. 75 dieser Versuche – dies entspricht 60 % – wurden dabei als Trockenstress-Versuche definiert, bei den restlichen 40 % der Versuche wirkte ein niedriger oder gar kein Trockenstress auf die Versuchspflanzen ein. Dieser ausgeprägte Trockenstress erlaubte es an vielen Versuchsstandorten und in vielen Versuchen gezielt hinsichtlich Trockenstresstoleranz bei neuen Zuchtlinien zu selektieren. Im vergangenen Projektjahr wurden dabei besonders wertvolle Daten zu Trockenstress- und Hitzetoleranz vor allem an den ungarischen und rumänischen Standorten gewonnen. Auch im äußersten Osten Österreichs trat erheblicher Trockenstress auf, sodass hier Ertragsauswertungen unter Extrembedingungen durchgeführt werden konnten.

Abbildung 11 zeigt den adjustierten, mittleren relativen Kornertrag der zehn ertragsstärksten Winterweizen Zuchtlinien sowie der ebenfalls angebauten Standardsorten *Activius*, *Aurelius*, und *Chevignon*, welche im zweiten KLIMAFIT 2 Projektjahr 2022 in die Versuche gestellt wurden. In der Auswertung der Zuchtlinien wurde nicht hinsichtlich der unterschiedlichen Qualitätseinstufungen differenziert.

ERGEBNISSE

Im zurückliegenden Projektjahr erwiesen sich einige neue Zuchtlinien als durchgängig vielversprechend, da sie sowohl unter Normal- wie auch unter Trockenstress-Bedingungen überdurchschnittliche Erträge lieferten. Ausgewählte Zuchtlinien erreichten ein überdurchschnittliches relatives Ertragsniveau gegenüber dem adjustierten Mittelwert der Standardsorten unter Trockenstressbedingungen. Auch unter Idealbedingungen erwiesen sich diese Zuchtlinien als ertragsstark, was auf eine hohe Öko-Stabilität dieser neuen Zuchtlinien schließen lässt.

Neben dem Kornertrag wurden bei den in die Versuche gestellten Zuchtlinien auch weitere wichtige Parameter bonitiert und ausgewertet, welche in Tabelle 21 und Tabelle 22 aufgeführt sind. Neben dem wichtigen Kornertrag wurden auch weitere Parameter wie Hektolitergewicht, Rohprotein und Sedimentationswert erfasst, um festzustellen inwieweit sie trotz Hitze und Trockenstress den Qualitätsanforderungen neuer Sorten entsprechen.

Die erfolgreichen Arbeiten in der Züchtung von klimafitten Winterweizen-Sorten setzte sich auch im zweiten Projektjahr fort. Aufgrund der oftmals schwierigen klimatischen Bedingungen inkl. gehäuft auftretendem Trockenstress wirkte ein deutlicher Selektionsdruck hinsichtlich Trockenstress-Toleranz auf die Zuchtlinien ein. Wenn dennoch zufriedenstellende Ertragswerte vorlagen, und die Zuchtlinien bei weiteren Parametern wie vor allem Rohproteingehalt, Hektolitergewicht, Feuchtklebergehalt, Sedimentationswert, Wuchshöhe, Lagerung sowie Krankheitsresistenzen (in erster Linie gegenüber dem Braunrost) vielversprechende Werte aufwiesen, wurden diese in die Wertprüfung gestellt. Auch wurden Versuche mit künstlicher Fusarium-Infekion erfolgreich ausgewertet, wobei hier wertvolle Ergebnisse erzielt werden konnten. Warm-feuchte Bedingungen fördern diese Pflanzenkrankheit, zugleich steigen die Anforderungen der Lebensmittelindustrie und die Vorgaben der AGES Wertprüfung. Kandidaten mit einer verbesserten Fusarium-Toleranz konnten in der Wertprüfung angemeldet werden, bzw. besonders anfällige Kandidaten wurden verworfen. Im vergangenen Projektjahr wurden 18 Winterweizen-Zuchtstämme und 2 zusätzliche Biostämme für die amtliche Wertprüfung angemeldet.

Tabelle 21: Ausgewählte erhobene Parameter vielversprechender Winterweizen-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf den nächsten Seiten.

Name	Jahr	WP	Kolben- oder Grannenweizen	Qualitätseinstufung	Biolandbau	Standort	Land	Parzellenanzahl	Kornertrag Kornertrag	% Rohproteingehalt	高 Hektolitergewicht	B Sedimentationswert	© Tausendkorngewicht	% Feuchtkleber	∃ Wasseraufnahme NIR	Intensität des Trockenstresses für die Kultur
						Gleisdorf	AT	2	97.4		64 .1					4
WW22_3	2022		K	M	nein	Mistelbach	AT	2	112.5	6.1	36.9	24		13.3		2
						St. Florian	AT	2								4
						Gleisdorf	AT	2	94.9		7 3.2					4
WW22_15	2022		K	M	nein	Mistelbach	AT	2	106.7	6.8	38.7	29		15.1		2
						St. Florian	AT	2	0.60		70.0					4
1111100 16	2022		***			Gleisdorf	AT	2	96.3	1 . 4	7 8.9	27		12.0		4
WW22_16	2022		K	M	nein	Mistelbach	AT	2	105. 0	6.4	40.1	27		13.8		2
						St. Florian	AT	2	01.4		7.0					4
WW.22 10	2022		V	м	:	Gleisdorf	AT	2	91.4 103.3	6.8	76.9	21		15.6		4
WW22_18	2022		K	M	nein	Mistelbach	AT	2	103.5	0.8	40.5	31		15.6		2
						St. Florian	AT	2	91.5		7 4.6					4
WW22 10	2022		K	M	nain	Gleisdorf Mistelbach	AT AT	2	91.5 105.8	6.0	38.7	22		12.9		2
WW22_19	2022		K	IVI	nein	St. Florian	AT	2	<u>103.</u> b	0.0	38.7	22		12.9		4
						Gleisdorf	AT	2	95.0		7 4.8					4
WW22_22	2022		K	M	nein	Mistelbach	AT	2	106.2	6.4	38.9	27		14.2		2
VV VV 22_22	2022		IX	171	пстп	St. Florian	AT	2	100.£	0.4	30.7	21		14.2		4
						Gießhübl	AT	2	90.1	6.1	37.3	23		13.2		4
WW22_30	2022	X	K	M	nein	Gurten	AT	2	72.4	0.1	77 .1			13.2		4
						St. Florian	AT	2								4
						Gießhübl	AT	2	87.1							4
WW22_32	2022	X	K	M	nein	Gurten	AT	2	70.2		80.2					4
						St. Florian	AT	2								4
						Gießhübl	AT	2	87.0	5.7	39.3	22		11.9		4
WW22_42	2022	X	K	M	nein	Gurten	AT	2	71.4		7 8.2					4
						St. Florian	AT	2								4
						Gießhübl	AT	2	80.5	6.3	40.4	24		14.1		4
WW22_69	2022	X	K	M	nein	Gurten	AT	2	71.4		81.3					4
						St. Florian	AT	2								4
						Gießhübl	AT	2	89.7	5.7	37.4	20		11.8		4
WW22_81	2022	X	K	M	nein	Gurten	AT	2	73.8		7 7.6					4
						St. Florian	AT	2								4
						Gerhaus	AT	2	7 0.5		7 2.4					2
WW22_182	2022		G	M	nein	Hatzendorf	AT	2	89.6		7 2.1					4
						Mistelbach	AT	2	104. 3	12.0	7 9.5	47		26.2		2
WW22_227	2022	X	K	M	nein	Gießhübl	AT	2	78.1							4
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- 1	.,	171	110111	St. Florian	AT	2								4

Name	Jahr	WP	Kolben- oder Grannenweizen	Qualitätseinstufung	Biolandbau	Standort	Land	Parzellenanzahl	Kornertrag	% Rohproteingehalt	Hektolitergewicht	B Sedimentationswert	Tausendkorngewicht	% Feuchtkleber	B Wasseraufnahme NIR	Intensität des Trockenstresses für die Kultur
WW22_237	2022	X	K	M	nein	Gießhübl	AT	2	86.8	<u>10</u> .6	7 9.0	33		22.3		4
_						St. Florian	AT	2	70.4							4
						Gerhaus	AT	2	72.4 93.7		76.7					4
WW22_278	2022		G	M	nein	Hatzendorf Osijek	AT HR	2	93. 119.5		74.3 77.9					2
						Zagreb	HR	2	95.3		77.9					3
						Gerhaus	AT	2	59.2		77.3					2
						Hatzendorf	AT	2	81.7		78.2					4
WW22_288	2022	X	G	M	nein	Osijek	HR	2	99.8		81.3					2
						Zagreb	HR	2	97.6		81.6					3
						Gerhaus	AT	2	75 .4	12.2	7 1.3	43		26.6		2
******	2022					Hatzendorf	AT	2	80.3		6 8.6					4
WW22_294	2022		K	M	nein	Osijek	HR	2	115.8		7 1.8					2
						Zagreb	HR	2	100.4		7 3.1					3
						St. Amand	FR	2	47.7		7 5.2					2
						Szajol-Cegléd	НО	2	29.6							1
						Gerhaus	AT	2	63.0	13.2	7 9.8	45		28.3		2
						Janzé	FR	2	100.9		7 8.1					3
WW22_327	2022		G	M		Scanteia	RO	2	93. 0	<u>11</u> .6		38		25.0		2
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2022			111		Staasdorf	AT	2	104.9	<u>13.</u> 4	80.2		39.2			3
						Szekkutas	НО	2	58.8	<u>1</u> 0.4	82.8	28	33.7	22.4		1
						Urziceny	RO	2	65.4	10 5	78.5			20.2		1
						Viglas	SK	2	104.4		84.2	47	45 6	28.3		2
						Weikendorf	AT	2	86.7		=	50	45.8	31.6	57.4	2
						Leopoldsdorf Staasdorf	AT	2	72.7 99.3		80.7 80.3		45.2 43.6		5/.4	3
						Weikendorf	AT AT	2	53.4		81.6		42.8		57 1	2
WW22_763	2022	X	G			Probstdorf	AT	2	67.2		81.2		51.1	30.1		2
						Osijek	HR	2	118.4	12.0	76.6		J1.1	30.1	30.2	1
						Modelu	RO	2	72.8	14.6			42.5	34.1		1
						Leopoldsdorf	AT	2	69.0						56.9	2
						Staasdorf	AT	2	100.6						20.7	3
						Weikendorf	AT	2	51.6		82.0		40.6		58.2	2
WW22_764	2022	X	G			Probstdorf	AT	2	80.1		81.9	90		31.2		2
_						Probstdorf	AT	2	71.0		82.0		46.3	31.1		2
						Osijek	HR	2	109.4		7 5.4					1
						Modelu	RO	2	66.6	14.2	80.1		35.9	33.2		1

Name	Jahr	WP	Kolben- oder Grannenweizen	Qualitätseinstufung	Biolandbau	Standort	Land	Parzellenanzahl	Kornertrag	% Rohproteingehalt	Hektolitergewicht	B Sedimentationswert	Tausendkorngewicht	% Feuchtkleber	∃ Wasseraufnahme NIR	Intensität des Trockenstresses für die Kultur
						Leopoldsdorf	AT	2	71.4	13.9	7 8.5		36.1	28.7	53.6	2
						Probstdorf	AT	2	74 .6	11.0	7 8.8		39.3		53.0	2
						Staasdorf	AT	2	93.4	<u>14.4</u>	74.4		31.7	33.7		3
WW22_765	2022	X	G			Weikendorf	AT	2	49.8	<u>12.</u> 9			38.6	30.8	54.8	2
						Marchtrenk	AT	2	124.7	<u>11</u> .6		66	<u>3</u> 8.5	27.2		3
						Melk	AT	2	103.5	11.6			33.9	26.8		3
						Reichersberg	AT	2	99.2	14.0		69	32.8	31.8		3
						Leopoldsdorf	AT	2	70.4	14.9	82.8		42.8	33.4	56.1	2
						Staasdorf	AT	2	93.1	14.9	81.9		42.1	34.7	 .	3
WW22_766	2022	X	G			Weikendorf	AT	2	47.7	14.3	83.5		42.9	35.3		2
						Probstdorf	AT	2	71.5	13.5	82.4		48.3	31.9	55.0	2
						Osijek	HR	2	112.0	124	76.1		40 5	21.5		1
						Modelu	RO	2	78.5	13.4	83.3		42.5 42.8	31.5	55.4	1
						Leopoldsdorf	AT AT	4	70.3 55.4	15.2 14.4	83.0 83.1		42.8 40.9	35.8 36.8		2 2
						Weikendorf Probstdorf (V34)	AT	4 8	72.6	14.4 11.9	81.9	101	47.6	26.2		2
						Probstdorf (V34)	AT	4	72.9	12.5	82.7	101	46.0	30.0		2
WW22_767	2022	X	G			Melk	AT	4	107.9	13.8	81.6		40.5	32.0	30.3	3
W W 22_707	2022	Λ	U			Osijek	HR	4	107.2	13.0	74.0		4 ψ.5	32.0		1
						Szekkutas	НО	4	53.4		74.0					1
						Modelu	RO	4	3 2.7							1
						Mircea voda	RO	4								1
						Leopoldsdorf	AT	2	69.0	16.1	83.9		43.9	38.1	56.7	2
						Staasdorf	AT	2	89.5				39.8			3
						Weikendorf	AT	2	50.1	15.4			42.1	39.0	57.5	2
WW22_768	2022	X	G			Probstdorf (V34)	AT	4	70.7		83.6		49.4	31.0		2
_						Probstdorf	AT	2	68.7	12.4			47.6	28.1	56.5	2
						Osijek	HR	2	109.5		7 9.1					1
						Modelu	RO	2	71.9	15.0	82.6		39.8	34.4		1
						Gerhaus	AT	2	65.4	14.1	7 7.3	65		31.7		2
WW22_776	2022	X	K	Q	ja	Großenzersdorf	AT	2	74.0		7 8.1					2
						Mistelbach	AT	2	100.3	14.2	82.5	67		32.2		2
						Gerhaus	AT	2	6 6.9	14.5	7 7.1	66		31.7		2
WW22_790	2022	X	G	Q	ja	Großenzersdorf	AT	2	76 .2		7 8.2					2
						Mistelbach	AT	2	94.8		82.3			31.6		2
WW22_1157	2022	X	G			Probstdorf (V31)	AT	4	69.2	13.1	82.7	100	50.6	31.0	57.0	2
WW22_1158	2022	X	G			Probstdorf (V32)	AT	6	67.6	12.1	83.0	98	47.8	26.3		2
WW22_1159	2022	X	G			Probstdorf (V33)	AT	8	73.4	14.1	84.5	99	43.5			2
WW22_1160	2022	X	G			Probstdorf (V33)	AT	4	74 .1	14.6	83.6	99	49.2	37.0	59.7	2

Tabelle 22: Ausgewählte bonitierte Parameter vielversprechender Winterweizen-Zuchtlinien im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf den nächsten Seiten.

Name	ır	•	Kolben- oder Grannenweizen	Qualitätseinstufung	Biolandbau	Standort	pu	Parzellenanzahl	Datum Ährenschieben	Wuchshöhe	Reifebonitur	Lagerung	Mängel vor Winter	Mängel nach Winter	Mehltau (ERYSIPHE GRAMINIS)	Braunrost (P.TRIT., P. DISP.)	Septoria tritici - Blattdürre	Blattseptoria (Septoria nodorum)	Ährenfusarium (FUSARIUM SP.)	Intensität des Trockenstresses für die Kultur
Z	Jahr	WP	Ko	ō	Bic		Land	Pai	1. Jan	cm					Bon.1	-9				Int
						Gleisdorf	AT	2	143	95									3.0	
WW22_3	2022		K	M	nein	Mistelbach	AT	2	139						1.0					2
						St. Florian	AT	2	146			1.0								4
				_		Gleisdorf	AT	2	145	93			_						2.0	4
WW22_15	2022		K	M	nein	Mistelbach	AT	2	141						1.0					2
						St. Florian	AT	2	148			1.0								4
						Gleisdorf	AT	2	143	93									4.0	4
WW22_16	2022		K	M	nein	Mistelbach	AT	2	141						2.0					2
						St. Florian	AT	2	147			1.0								4
						Gleisdorf	AT	2	144	98									3.5	4
WW22_18	2022		K	M	nein	Mistelbach	AT	2	140						1.0					2
						St. Florian	AT	2	145			1.0								4
						Gleisdorf	AT	2	142	88									3.5	4
WW22_19	2022		K	M	nein	Mistelbach	AT	2	140						1.0					2
						St. Florian	AT	2	145			1.0								4
						Gleisdorf	AT	2	141	98									5.0	4
WW22_22	2022		K	M	nein	Mistelbach	AT	2	138						1.0					2
						St. Florian	AT	2	147			1.0								4
						Gießhübl	AT	2	148	100						2.5				4
WW22_30	2022	X	K	M	nein	Gurten	AT	2	149	100		1.0				1.0			5.0	4
_					li	St. Florian	AT	2	148			7.5				Ī				4
						Gießhübl	AT	2	147	105						2.0				4
WW22_32	2022	X	K	M	nein	Gurten	AT	2	149	100		1.0				1.0			5.5	4
						St. Florian	AT	2	143			6.0								4
						Gießhübl	AT	2	147	85						1.0				4
WW22_42	2022	X	K	M	nein	Gurten	AT	2	149	90		1.0				1.0			4.5	4
_						St. Florian	AT	2	148			6.5								4
						Gießhübl	AT	2	142											4
WW22_69	2022	X	K	M	nein	Gurten	AT	2	142	100		1.0				2.0			3.0	4
						St. Florian	AT	2	142			1.0								4
						Gießhübl	AT	2	149	90						1.0				4
WW22_81	2022	X	K	M	nein	Gurten	AT	2	149	90										4
						St. Florian	AT	2	148			7.5								4
						Gerhaus	AT	2	134	73					2.0	1.0				2
WW22 182	2022		G	M	nein	Hatzendorf	AT	2	141	75									6.0	4
22_102				.,,		Mistelbach	AT	2	135						1.0	1.0				2
					\Box	Gießhübl	AT	2	149	80						0.5				4
WW22_227	2022	X	K	M	nein	St. Florian	AT	2	148			2.5								4

Name	Jahr	WP	Kolben- oder Grannenweizen	Qualitätseinstufung	Biolandbau	Standort	Land	Parzellenanzahl	de aga Tage ab	Wuchshöhe	Reifebonitur	Lagerung	Mängel vor Winter	Mängel nach Winter	Mehltau (ERYSIPHE GRAMINIS)	Braunrost (P.TRIT., P. DISP.)	Septoria tritici - Blattdürre	Blattseptoria (Septoria nodorum)	Ährenfusarium (FUSARIUM SP.)	Intensität des Trockenstresses für die Kultur
Z	Ĩ	>	X	0	Ñ				1. Jan			I		_		_				
WW22_237	2022	X	K	M	nein	Gießhübl	AT	2	143	98		4.0								4
						St. Florian Gerhaus	AT AT	2	142	78		4.0			2.0				7.5	2
						Hatzendorf	AT	2	144	80					2.0				5.0	4
WW22_278	2022		G	M	nein	Osijek	HR	2	132	88		1.0							D .0	2
						Zagreb	HR	2	134	78		1.0								3
						Gerhaus	AT	2	133	75					4.0				8.0	2
						Hatzendorf	AT	2	142	73					4.0				3.0	4
WW22_288	2022	X	G	M	nein	Osijek	HR	2	128	83		1.0							1 3.0	2
						Zagreb	HR	2	131	87		1.0								3
						Gerhaus	AT	2	137	78					4.0				8.5	2
						Hatzendorf	AT	2	143	8 0					4.0				5.0	4
WW22_294	2022		K	M	nein		HR	2	132	85		1.0							0.0	2
						Osijek	HR	2	133	87		1.0								3
						Zagreb			133	0/										
						St. Amand Szajol-Cegléd	FR HO	2												2
						Gerhaus	AT	2							5.0	2.0				2
						Janzé	FR	2		90	1.0	1.0	1.0	1.0	3.0	2.0	1.5			3
							RO	2		90	1.0	1.0	1.0	1.0			1.3			2
WW22_327	2022		G	M		Scanteia Staasdorf	AT	2		80		1.0			3.0				3.4	3
						Szekkutas	НО	2	133	<u>_</u> φ U					0.0				3.4	1
						Urziceny	RO	2	133				1.0	1.0						1
						Viglas	SK	2	146	84	1.0			3.0		1.3	2.5		2.3	2
						Weikendorf	AT	2	140	04	1.0		₽.0	. .0		<u> </u>	4.5		2.3	2
						Leopoldsdorf	AT	2		76										2
						Staasdorf	AT	2		/ U	1.7			1.8	3.0				3.5	3
						Weikendorf	AT	2	137	61	2.7			1.0	O.O.			4.0	د.د	2
WW22_763	2022	X	G			Probstdorf	AT	2	138	82	3.8							4.0		2
						Osijek	HR	2	100	Q∠	5.3	1.5						 v		1
						Modelu	RO	2	137	83	5.5	1.0								1
						Leopoldsdorf	AT	2	101	88		1.0								2
						Staasdorf	AT	2		00	4.1			2.4	3.8				2.0	3
						Weikendorf	AT	2	139	67	7.3			<u>-</u>	υ.υ			2.9	2.0	2
WW22_764	2022	X	G			Probstdorf	AT	2	138	97	,.5				1.0			2.0		2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2.				Probstdorf	AT	2	139	92	5.0				1.0			3.5		2
						Osijek	HR	2				2.0								1
						Modelu	RO	2	138	94	0.0	1.0								1

Name	Jahr	WP	Kolben- oder Grannenweizen	Qualitätseinstufung	Biolandbau	Standort	Land	Parzellenanzahl	Datum Ährenschieben	m Wuchshöhe	Reifebonitur	Lagerung	Mängel vor Winter	Mängel nach Winter	mehitau (ERYSIPHE GRAMINIS)	Braunrost (P.TRIT., P. DISP.)	Septoria tritici - Blattdürre	Blattseptoria (Septoria nodorum)	Ährenfusarium (FUSARIUM SP.)	Intensität des Trockenstresses für die Kultur
, ,						Leopoldsdorf	AT	2		67										2
						Probstdorf	AT	2	137	67	2.9							3.2		2
						Staasdorf	AT	2			6.0			2.1	3.4				4.8	3
WW22_765	2022	X	G			Weikendorf	AT	2	138	61	5.3							4.2		2
						Marchtrenk	AT	2						3.0						3
						Melk	AT	2				1.0	2.2	1.1						3
						Reichersberg	AT	2	149	83		1.0	6.3	2.8		1.0				3
						Leopoldsdorf	AT	2		80										2
						Staasdorf	AT	2			1.4			1.2	4.3				2.3	3
WW22_766	2022	X	G			Weikendorf	AT	2	134	65	3.9							5.6		2
W W 22_700	2022	Λ	G			Probstdorf	AT	2	133	82	2.7							4.5		2
						Osijek	HR	2			3.5	4.4								1
						Modelu	RO	2	131	92		1.4								1
						Leopoldsdorf	AT	4		78										2
						Weikendorf	AT	4	134	66	4.1							5.1		2
						Probstdorf (V34)	AT	8	133	88					1.0			1.3		2
						Probstdorf	AT	4	134	90	3.8							2.8		2
WW22_767	2022	X	G			Melk	AT	4				1.4	2.3	1.8						3
						Osijek	HR	4			4.1	2.1								1
						Szekkutas	НО	4												1
						Modelu	RO	4												1
						Mircea voda	RO	4	130											1
						Leopoldsdorf	AT	2		86										2
						Staasdorf	AT	2			4.7			1.8	3.0				3.9	3
						Weikendorf	AT	2	136	67	4.8							4.2		2
WW22_768	2022	X	G			Probstdorf (V34)	AT	4	135	100					1.0			2.3		2
						Probstdorf	AT	2	136	89	3.4							2.8		2
						Osijek	HR	2			5.9	3.4								1
						Modelu	RO	2	135	101		1.5								1
						Gerhaus	AT	2	139	90										2
WW22_776	2022	X	K	Q	ja	Großenzersdorf	AT	2	136	85					1.0					2
						Mistelbach	AT	2	134											2
						Gerhaus	AT	2	141	80										2
WW22_790	2022	X	G	Q	ja	Großenzersdorf	AT	2	139	80					1.0					2
						Mistelbach	AT	2	141						1.0					2
WW22_1157	2022	X	G			Probstdorf (V31)	AT	4	135	109					1.0			1.8		2
WW22_1158	2022	X	G			Probstdorf (V32)	AT	6	137	101					1.0			2.3		2
WW22_1159	2022	X	G			Probstdorf (V33)	AT	8	133	100					1.0			1.3		2
WW22_1160	2022	X	G			Probstdorf (V33)	AT	4	137	107					1.0			1.8		2

3.1.2 GERSTE

3.1.2.1 Sommergerste

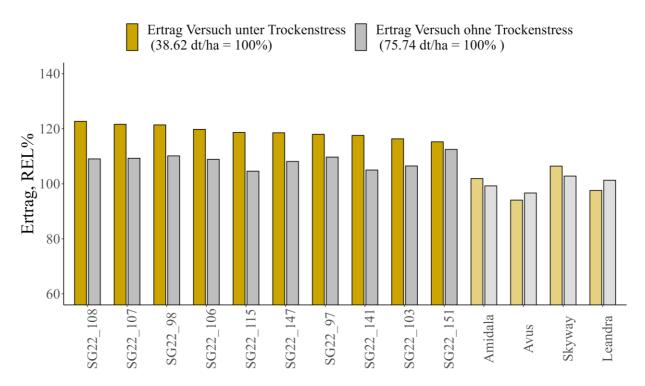


Abbildung 12: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche mit Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten Zuchtlinien der Sommergerste und der Standardsorten Amidala, Avus, Skyway und Leandra.

Im Vergleich zur Wintergerste ist die Sommergerste immer weniger gefragt, die Anbauflächen sind schon seit Jahren rückläufig. Folglich wurde diese Kulturart auch nur untergeordnet im zweiten Projektjahr 2022 behandelt. Es wurden an 6 Standorten lediglich 17 Versuche angelegt. Alle Standorte befanden sich dabei in Österreich. 2 Versuchsstandorte mit zusammen 4 Versuchen wurden dabei mit mittlerer Trockenstressintensität bewertete, die restlichen 13 Versuche wurden an Standorten angelegt, wo nur ein niedriger Trockenstress vorlag. Als Standardsorten wurden *Amidala*, *Avus*, *Skyway* und *Leandra* mit in die Versuche gestellt, hier zeigte sich vor allem bei den Trockenstandorten, dass manche der neuen Zuchtlinien sich ertragsstärker als die Standardsorten erwiesen (Abbildung 12).

Da es sich aber bei diesen Zuchtlinien fast ausnahmslos um Braugerste handelt, sind andere Qualitätskriterien ebenfalls von großem Interesse und fließen überproportional in die Selektion der Zuchtlinien ein. So ist zum Beispiel ein geringer Proteingehalt wünschenswert. Weitere wichtige Qualitätskriterien bei der Braugerste ist der Beta-Glucan-Gehalt, sowie eine gute Kornausbildung, was durch einen hohen Vollgerstengehalt (Sortierung >2,5mm) gewährleistet wird. Einige der für die Züchtung ausschlaggebenden Qualitätsparameter welche im Rahmen des KLIMAFIT Projektes von den Züchtungsunternehmen miterhoben wurden sind in Tabelle 23 und Tabelle 24 wiedergegeben. Ein Resultat der intensiven Züchtungsbemühungen im Rahmen des KLIMAFIT Projektes bei der Kulturart Sommergerste ist die Anmeldung von 8 Sortenkandidaten in 2022 zur Wertprüfung.

Tabelle 23: Ausgewählte erhobene Parameter vielversprechender Sommergerste-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf der nächsten Seite.

Name	Jahr	WP	Brau- oder Futtergerste	Standort	Land	Parzellenanzahl	Wornertrag Kornertrag	% Rohproteingehalt (Braugerste)	Tausendkorngewicht	Hektolitergewicht	Sortierung > 2,2 mm (Marktware)	Sortierung > 2,5 mm (Vollgerste)	Sortierung > 2,8 mm	Intensität des Trockenstresses für die Kultur
				Edelhof	AT	2	83.1							3
SG22_8	2022	X	В	Gerhaus	AT	2	53.6	12.2		6 6.7	99.3	99.0	92.6	3
				Waltersdorf	AT	2	76 .9	<u>1</u> 0.4		<u>6</u> 7.7	99.2	97.4	83.9	3
				Edelhof	AT	2	83.2							3
SG22_13	2022	X	В	Gerhaus	AT	2	5 7.1	<u>1</u> 1.1		6 6.4			85.4	3
				Waltersdorf	AT	2	82.4	9.5		6 8.5	99.4	97.3	82.9	3
				Edelhof	AT	2	89.5							3
SG22_21	2022	X	В	Gerhaus	AT	2	5 7.9	11.2				98.9		3
				Waltersdorf	AT	2	79 .3	11.0		6 7.3	99.2	96.1	74.1	3
5022 22	2022	37	Ъ	Edelhof	AT	2	80.5	112		Pr 1	00.2	00.4	01.4	3
SG22_23	2022	X	В	Gerhaus	AT	2	61.5	11.3		67.1 67.3	99.3	+	91.4	3
				Waltersdorf	AT	2	76.0 81.1	9.9		0/.3	99.2	97.3	85.6	3
SG22_43	2022	X	В	Edelhof Gerhaus	AT AT	2	\$5.1	11.6		67.6	00.6	98.8	02.4	3
SG22_43	2022	Λ	D	Waltersdorf	AT	2	76.0	9.4				97.3		3
				Gerhaus	AT	2	62.6	7.4		67.6	77.3	91.3	62.5	3
SG22_82	2022	X	В	Waltersdorf	AT	2	71.1			70 .3				3
				Gerhaus	AT	2	\$6.1			68.9				3
SG22_90	2022	X	В	Waltersdorf	AT	2	71.8			69.6				3
				Probstdorf	AT	2	46.8	9.4	55.2			98.3	91.8	2
SG22_97	2022		В	Weikendorf	AT	2	44.4	12.7		_				2
				Großnondorf	AT	2	103.9	_		71.2		97.3		3
				Probstdorf	AT	2	48.7	9.2		_		96.5		2
SG22_98	2022		В	Weikendorf	AT	2	45.1	11.4	50.4	_		94.5		2
				Großnondorf	AT	2	104.3	10.5	56.5	72.3		97.0		3
				Probstdorf	AT	2	-	9.6				98.2		2
SG22_103	2022		В	Weikendorf	AT	2	41.7	12.8	56.1	_		97.5		2
				Großnondorf	AT	2	101.5	10.9	59.8	7 2.6	99.6	98.3	93.8	3
				Probstdorf	AT	2	46.3	10.0	55. 6			97.3		2
SG22_106	2022		В	Weikendorf	AT	2	46.2	13.3	53.8	7 0.6	98.0	95.5	86.7	2
				Großnondorf	AT	2	103.3	11.0	57.9	7 4.1	99.7	98.0	93.3	3

Name		Jahr	WP	Brau- oder Futtergerste	Standort	Land	Parzellenanzahl	Kornertrag Kornertrag	% Rohproteingehalt (Braugerste)	Tausendkorngewicht	Hektolitergewicht	Sortierung > 2,2 mm (Marktware)	Sortierung > 2,5 mm (Vollgerste)	Sortierung > 2,8 mm	Intensität des Trockenstresses für die Kultur
		J	·		Probstdorf	AT	2	49.1	9.7	<u>54</u> .9	6 6.6	99.5	97.9	88.9	2
SG22_	107	2022		В	Weikendorf	AT	2	44.8	13.1	52.1	69 .8	97.9	94.2	82.7	2
					Großnondorf	AT	2	103.6	11.8	56.6	7 2.7	99.1	97.0	90.5	3
					Probstdorf	AT	2	50.4	9.9	5 3.5	6 8.4	99.6	97.5	85.3	2
SG22_	108	2022		В	Weikendorf	AT	2	44.4	13.6	48.0	7 0.3	98.0	94.8	81.1	2
					Großnondorf	AT	2	103.4	11.9	52.2	-	98.3	95.0	84.4	3
					Probstdorf	AT	2	48.0	9.8	52.7	6 7.9	99.6	97.9	87.8	2
SG22_	115	2022		В	Weikendorf	AT	2	43.6	12.0	53.2	70 .8	99.2	97.1	88.2	2
					Großnondorf	AT	2	100.1	11.4	57.0	74.1	99.6	97.5	90.7	3
					Probstdorf	AT	2	50.6	11.5	53.5	6 7.0	99.6		90.2	2
SG22_	141	2022		В	Weikendorf	AT	2	40.3	13.4	48.9	70.3	99.2	97.1	86.4	2
					Großnondorf	AT	2	100.4	<u>11</u> .4	5 6.3	7 2.6	99.6	98.2	92.7	3
					Probstdorf	AT	2	49.3	10.8	5 3.0	6 6.8	99.3	96.3	86.8	2
SG22_	147	2022		В	Weikendorf	AT	2	42.2	13.3	57.3	70 .6	99.3		89.5	2
					Großnondorf	AT	2	102.7	<u>1</u> 1.1	58.7	72.3	99.8	_	92.3	3
					Probstdorf	AT	2	47.6	10.4	5 2.2	64.7	99.2		85.4	2
SG22_	151	2022		В	Weikendorf	AT	2	41.4	13.3	50.6	70 .4			86.3	2
					Großnondorf	AT	2	106.0	<u>1</u> 0.7	57.3	<u>72.2</u>	99.5		91.1	3
					Probstdorf	AT	2	39.4	10.0	<u>54</u> .4	6 8.0	99.1	96.5	85.5	2
SG22_	155	2022	X	В	Weikendorf	AT	2	46.9	12.8	5 2.1	69 .6	98.2	95.9	86.7	2
					Großnondorf	AT	2	96.3	12.1	56.4	7 3.3	98.6	96.2	89.3	3

Tabelle 24: Ausgewählte bonitierte Parameter vielversprechender Sommergerste-Zuchtlinien im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf der nächsten Seite.

Name	nr	a.	Brau- oder Futtergerste	Standort	Land	Parzellenanzahl	Wuchshöhe	de ab Datum Ährenschieben	Lagerung	Mehltau (ERYSIPHE GRAMINIS)	Zwergrost (PUCCINIA HORDEI)	Netzflecken (PYRENOPH. TERES)	Intensität des Trockenstresses für die Kultur
Na	Jahr	WP	Br	Ste	La		cm	1.Jan	dt/ha	В	on.1	-9	Int Ku
				Edelhof	AT	2	68	163				1.5	3
SG22_8	2022	X	В	Gerhaus	AT	2		143				1.0	3
				Waltersdorf	AT	2		68					3
				Edelhof	AT	2	6 5	161				1.5	3
SG22_13	2022	X	В	Gerhaus	AT	2		142				1.0	3
				Waltersdorf	AT	2		67					3
			_	Edelhof	AT	2	73	163				1.0	3
SG22_21	2022	X	В	Gerhaus	AT	2		144				1.5	3
				Waltersdorf	AT	2	- b	67				.	3
GG22 22	2022	**	_	Edelhof	AT	2	70	160				1.5	3
SG22_23	2022	X	В	Gerhaus	AT	2		143				1.0	3
				Waltersdorf	AT	2	70	67				1	3
5022 42	2022	37	Ъ	Edelhof	AT	2	73	163				1.5	3
SG22_43	2022	X	В	Gerhaus	AT	2		143				2.5	3
				Waltersdorf	AT	2		67					3
SG22_82	2022	X	В	Gerhaus	AT	2		67					3
				Waltersdorf	AT	2		67					3
SG22_90	2022	X	В	Gerhaus	AT AT	2		67					3
				Waltersdorf	AT	2	70	143		1.0	3.5		2
SG22_97	2022		В	Probstdorf Weikendorf	AT	2	60	143		1.0	D 13		$\frac{2}{2}$
3022_91	2022		Ъ	Großnondorf	AT	2	77	145	1.4	1.0		3.4	3
				Probstdorf	AT	2	57	145	1.4	1.0	2.5	<u>J.4</u>	2
SG22_98	2022		В	Weikendorf	AT	2	52	143		1.0	د. ب		2
5044_70	2022		ען	Großnondorf	AT	2	72	147	1.0	1.0		4.0	3
				Probstdorf	AT	2	62	142	∪	1.0	4.0	7.0	2
SG22_103	2022		В	Weikendorf	AT	2	55	141		1.0	<u></u> ν		2
JG##_105	2022			Großnondorf	AT	2	72	144	1.3	1.0		3.4	3
				Probstdorf	AT	2	65	143	10	1.0	4.6	J. F	2
SG22_106	2022		В	Weikendorf	AT	2	60	141		1.0			2
222_100				Großnondorf	AT	2	78	145	1.6	1.0		4.6	3

Ð			Brau- oder Futtergerste	Standort	ı	Parzellenanzahl	Wuchshöhe	Datum Ährenschieben	Lagerung	Mehltau (ERYSIPHE GRAMINIS)	Zwergrost (PUCCINIA HORDEI)	Netzflecken (PYRENOPH. TERES)	Intensität des Trockenstresses für die Kultur
Name	Jahr	WP	Brau	Stan	Land	Parz	cm	Tage ab 1.Jan	dt/ha	В	on.1	-9	Intensi Kultur
				Probstdorf	AT	2	61	142		1.0	3.0		2
SG22_107	2022		В	Weikendorf	AT	2	55	141		1.0			2
				Großnondorf	AT	2	72	145	0.6	1.0		2.5	3
				Probstdorf	AT	2	63	143		1.0	2.1		2
SG22_108	2022		В	Weikendorf	AT	2	60	141		1.0			2
				Großnondorf	AT	2	77	145	1.0	1.0		4.1	3
				Probstdorf	AT	2	67	144		1.0	3.5		2
SG22_115	2022		В	Weikendorf	AT	2	62	142		1.0			2
				Großnondorf	AT	2	79	145	2.1	1.0		3.5	3
				Probstdorf	AT	2	61	143		1.0	2.5		2
SG22_141	2022		В	Weikendorf	AT	2	56	141		1.5			2
				Großnondorf	AT	2	75	144	1.0	1.0		2.6	3
				Probstdorf	AT	2	63	145		1.0	3.0		2
SG22_147	2022		В	Weikendorf	AT	2	63	142		1.0			2
				Großnondorf	AT	2	81	146	1.0	1.0		2.9	3
				Probstdorf	AT	2	62	142		1.0	5.0		2
SG22_151	2022		В	Weikendorf	AT	2	56	140		1.0			2
				Großnondorf	AT	2	75	144	1.0	1.0		4.7	3
				Probstdorf	AT	2	69	147		1.0	2.0		2
SG22_155	2022	X	В	Weikendorf	AT	2	62	143		1.0			2
				Großnondorf	AT	2	83	146	1.1	1.0		4.0	3

3.1.2.2 <u>Zweizeilige und mehrzeilige Wintergerste</u>

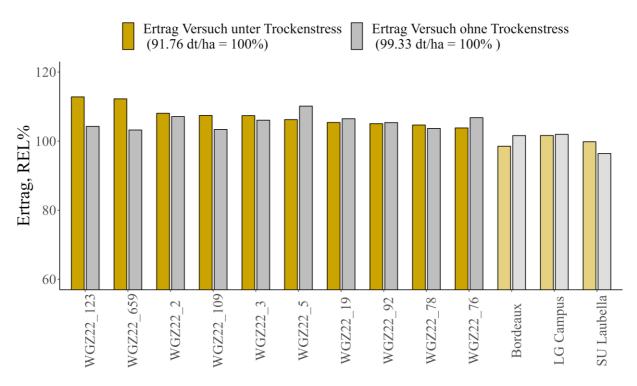


Abbildung 13: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche mit Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten Zuchtlinien der zweizeiligen Wintergerste und der Standardsorten *Bordeaux*, *LG Campus* und *SU Laubella*.

Aufgrund der gehäuft auftretenden trockenen Sommer hat sich in den letzten Jahren der Anbau von Sommergerste stark reduziert, während der Winteranbau sowohl von zweizeiliger, als auch von mehrzeiliger Wintergerste steigend war. In Österreich liegt die Verteilung der Kultivierung der Wintergerste bei etwa 60 % zweizeiliger und 40 % mehrzeiliger Wintergerste. Ein Fokus der Gerstenzüchtung in den letzten Jahren liegt auf der Züchtung von als Braugerste verwertbarer Wintergerste, da diese die Winterfeuchte besser ausnutzen kann. Verstärkte Bemühungen in der Züchtung von ertragsstabiler Wintergerste mit guten Brauqualitäten (Malzqualität, Rohproteingehalt) ist also eine vielversprechende Strategie zur Anpassung der heimischen Landwirtschaft an die zukünftigen Auswirkungen des Klimawandels. Aber auch die Verwendung der mehrzeiligen Wintergerste als Futtergerste bleibt von großer Bedeutung, weswegen auch hier intensive Züchtungsarbeiten betrieben werden.

Aus diesem Potential dieser Kulturart resultiert ein großer Arbeitsumfang, dem die Wintergerste im KLIMAFIT Projekt eingeräumt wird. Nach Winterweizen ist sie die Getreideart (exkl. Mais) mit den meisten Versuchsstandorten, und wurde im zurückliegenden Projektjahr an 43 Standorten in 150 Versuche gestellt. Es wurden also bei der Wintergerste mehr Versuche angelegt als beim Winterweizen. Von den 43 Versuchsstandorten befanden sich 14 in Österreich und die restlichen 29 im europäischen Ausland. Die in Österreich angelegten Wintergerstenversuche in 2022 waren teilweise durch Hagelschlag beeinträchtigt, aber auch stärkeres Lager durch Starkniederschläge trat an manchen Standorten auf. Von den 150 Versuchen lag bei 68 Versuchen ein mittlerer Trockenstress vor (Stufe 2), 44 Versuche wurden von den versuchsbetreuenden Züchter:innen mit Stufe 3 (entspricht einem niedrigen Trockenstress) und 38 Versuche wurden mit keinem Trockenstress eingestuft. Dass ein Versuch der höchsten Trockenstress-Stufe ausgesetzt war, kam im zurückliegenden Projektjahr nicht vor. Dennoch taten sich sowohl bei der zweizeiligen Wintergerste als auch bei der mehrzeiligen Wintergerste wieder Zuchtlinien hervor, die auch unter schwierigen Wasserbedingungen gegenüber den mitangebauten Standardsorten überdurchschnittliche Erträge liefern konnten (Abbildung 13 und Abbildung 14).

ERGEBNISSE

Natürlich sind auch bei den Wintergersten das Verhalten der neuen Zuchtlinien in ihrer Umwelt sowie die Qualitäten des Zuchtmaterials von wichtiger Bedeutung, um den Ansprüchen der Industrie gerecht zu werden. Hinsichtlich der Qualitäten lag der Schwerpunkt der Qualitätsanalysen auf der bei Winterbraugerste besonders wichtigen Kornsortierung, sowie auf dem Hektolitergewicht. Letzteres ist für die Vermarktung von Futtergerste entscheidend, gibt aber auch einen Hinweis auf den energetischen Futterwert der Genotypen. Auch ist die Lagerung des Bestandes ein züchterisch wichtiges Kriterium für Selektion. Lange hatte mehrzeilige Wintergerste gegenüber zweizeiliger Wintergerste mit geringerer Standfestigkeit zu kämpfen. Bei der Entwicklung von neuen, klimafitten Sorten wird besonders auf eine hohe Standfestigkeit geachtet. Gerade bei Winterbraugerste macht sich stärkere Lagerbelastung auch durch Störung des Enzymhaushaltes und damit Beeinträchtigung der Brauqualität negativ bemerkbar. Zudem wird bei Wintergerste die Toleranz gegen Ramularia wichtiger, weil durch Wegfall der Chlorthalonil-Pflanzenschutzmittel eine schlechtere Bekämpfbarkeit dieser Blattkrankheit gegeben ist und gleichzeitig durch intensivere Einstrahlung bei wechselnder Blattfeuchte (Tau bzw. Niederschläge) ein zunehmendes Auftreten in vielen Regionen zu beobachten ist. Auch hinsichtlich dieser Resistenzen wurde fallweise selektiert.

Die erhobenen, relevanten Qualitätsparameter der zweizeiligen Wintergerste sind in Tabelle 25 und Tabelle 26 angegeben, die der mehrzeiligen Wintergerste in Tabelle 27 und Tabelle 28. Besonders durch Ertrag unter Trockenstress-Bedingungen oder durch ihre Qualitäten hervorstechende Zuchtlinien wurden von den versuchsdurchführenden Züchtungsunternehmen selektiert und in die Wertprüfung gestellt. Diese sind in den Tabellen gesondert gekennzeichnet. Bei der zweizeiligen Wintergerste wurden im vergangenen Projektjahr 16 Kandidaten zur Wertprüfung angemeldet, bei der mehrzeiligen Wintergerste 10 Kandidaten.

Tabelle 25: Ausgewählte erhobene Parameter vielversprechender Zuchtlinien der zweizeiligen Wintergerste im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf der nächsten Seite.

Name	Jahr	Brau- oder Futtergerste	WP	Standort	Land	Parzellenanzahl	Kornertrag Kornertrag	% Rohproteingehalt	Tausendkorngewicht	Hektolitergewicht	Sortierung > 2,2 mm (Marktware)	Sortierung > 2,5 mm (Vollgerste)	Sortierung > 2,8 mm	Intensität des Trockenstresses für die Kultur
				Gerhaus	AT	2	69.6			5 9.8				2
				Gleisdorf	AT	2	110.3			55.9				4
WGZ22_2	2022	F	X	Großenzersdorf	AT	2	92.4			65.8				2
				Pöchlarn	AT	2								4
				St. Florian	AT	2	75.6	11.9			97	81	33	4
				Gerhaus	AT	2	64.0			63. 8				2
				Gleisdorf	AT	2	109.1			58.1				4
WGZ22_3	2022	F		Großenzersdorf	AT	2	96.7			66.2				2
				Pöchlarn	AT	2								4
				St. Florian	AT	2	74.7							4
				Gerhaus	AT	2	63.6			<u>61</u> .3				2
				Gleisdorf	AT	2	111.9			5 9.6				4
WGZ22_5	2022	F		Großenzersdorf	AT	2	95 .0			65.9	98	97	83	2
				Pöchlarn	AT	2								4
				St. Florian	AT	2	80.0				72	65	25	4
				Gerhaus	AT	2	67.3			57.8				2
				Gleisdorf	AT	2	125.1			56.5				4
WGZ22_16	2022	F	X	Großenzersdorf	AT	2	85.7	11.6		64.7	99	95	76	2
				Pöchlarn	AT	2								4
				St. Florian	AT	2	83.6	11.4			94	65	22	4
				Gerhaus	AT	2	64.9			5 7.8				2
				Gleisdorf	AT	2	109.7			54.6				4
WGZ22_19	2022	F		Großenzersdorf	AT	2	92.2	11.2		64.5	99	97	79	2
				Pöchlarn	AT	2								4
				St. Florian	AT	2	75.0	12.6			95	72	28	4
				Gleisdorf	AT	2	95.6			55.1	97	89	68	4
WGZ22_22	2022	F	X	Pöchlarn	AT	2								4
				St. Florian	AT	2	75.4	12.3			99	93	72	4

Name	Jahr	Brau- oder Futtergerste	WP	Standort	Land	Parzellenanzahl	Kornertrag	% Rohproteingehalt	og Tausendkorngewicht	ত্ত Hektolitergewicht	Sortierung > 2,2 mm (Marktware)	Sortierung > 2,5 mm (Vollgerste)	Sortierung > 2,8 mm	Intensität des Trockenstresses für die Kultur
	-			Gleisdorf	AT	2	104.2			5 9.4	98	93	68	4
WGZ22_28	2022	F	X	Pöchlarn	AT	2								4
				St. Florian	AT	2	74.3	11.6			99	94	57	4
				Gerhaus	AT	2	74.5			64.2				2
WGZ22_76	2022	F		Gleisdorf	AT	2	104.7			57.0				4
				Großenzersdorf	AT	2	79.7			65.3	99	95	69	2
				Gerhaus	AT	2	75.1			65.3				2
WGZ22_78	2022	F		Gleisdorf	AT	2	101.6			60.4				4
				Großenzersdorf	AT	2	80.6			63.1				2
				Marchtrenk	AT	2	113.4	11.7	46.5	65.7	97	91	81	3
WGZ22_92	2022	F		Probstdorf	AT	2	91.9	12.4	45.3	66.2	94	82	66	2
				Reichersberg	AT	2	94.7	9.7	49.8	66.3	98	88	73	3
				Marchtrenk	AT	2	110.1	11.3	45.1	65.1	96	87	63	3
WGZ22_109	2022	F		Probstdorf	AT	2	94.0	10.7	4 6.7	65.1	97	91	68	2
				Reichersberg	AT	2	94.0	9.5	49.8	62.7	96	83	56	3
				Marchtrenk	AT	2	114.7	10.7	51.8	64.3	99	96	89	3
WGZ22_123	2022	F		Probstdorf	AT	2	99.0	12.9	47.2	63.4	93	80	62	2
				Reichersberg	AT	2	91.2	9.1	48.1	62.1	97	84	63	3
				Marchtrenk	AT	2	110.6	10.5	53.5	66.5	98	95	85	3
WGZ22_656	2022	F	X	Probstdorf	AT	2	106.8	11.4	51.3	66.5	98	91	76	2
				Reichersberg	AT	2	87.4	9.6	54.1	67.5	98	92	79	3
				Marchtrenk	AT	2	107.7		<u>51.</u> 8		98	95	89	3
WGZ22_657	2022	F	X	Probstdorf	AT	2	<u>100</u> .6	1 1.1	<u>50</u> .5		94	83	69	2
				Reichersberg	AT	2	91.1	8.7	48.8		96	78	52	3
				Marchtrenk	AT	2	106.2		48.3		99	95	86	3
WGZ22_658	2022	F	X	Probstdorf	AT	2		10.1	44.6		97	85	68	2
				Reichersberg	AT	2	86.3	9.0	51.6	64.5	98	92	81	3

Name	Jahr	Brau- oder Futtergerste	WP	Standort	Land	Parzellenanzahl	Kornertrag	% Rohproteingehalt	Tausendkorngewicht	্র Hektolitergewicht	Sortierung > 2,2 mm (Marktware)	Sortierung > 2,5 mm (Vollgerste)	Sortierung > 2,8 mm	Intensität des Trockenstresses für die Kultur
				Marchtrenk	AT	2	109.5	10.9	48.1	66.1	97	91	80	3
WGZ22_659	2022	F	X	Probstdorf	AT	2	98.4	12.3	_	63.4	96	84	71	2
				Reichersberg	AT	2	94.3	9.2	49 .0	64.4	96	86	59	3
				Aspachhof	DE	2	84.9							3
				Großnondorf	AT	2	93.1	<u>12</u> .3	46.9	64. 2	99	97	93	2
WGZ22_661	2022	В	X	Marchtrenk	AT	2	96.9	<u>13</u> .0	47.2	64.8	98	96	89	3
				Osijek	HR	2	87.3	1 7 0		65.1				2
				Probstdorf	AT	2	75.5	15.8		67.2	95	88	75	2
				Reichersberg	AT	2	76.1	11.6	45.9	67.1	99	97	88	3
				Marchtrenk	AT	2	92.1	13.4	43.7	62.3	98	94	85	3
				Probstdorf	AT	2	92.4	10.9	45.3 47.9	65.1	99	97	90	2
				Reichersberg (Nbrau)	AT	2	74.9	9.9		64.8	99	96	85	3
				Reichersberg (Nfutter)	AT	2	73.6 98.9	10.3	45.9	66.5	98	95	85	3
WGZ22_662	2022	В	X	Aspachhof	DE		99.3	12.4	49.5	64.9	99	98	95	3
				Großnondorf Marahtrank	AT AT	2	99.b 89.5	14.4 11.4	48.5	63.4	99	98	90	3
				Marchtrenk	HR	2	95 3	<u>1</u> µ.4	40.5	63.4	90	93	90	2
				Osijek		2	80.6	140	41.8	66.3	06	90	75	2
				Probstdorf Reichersberg	AT AT	2	76.5	14.2 10.3	45.5	63.8	96 99	89 95	75 81	3
				Marchtrenk	AT	2	116.0	12.2	4 3.3	64.3	99	97	88	3
				Probstdorf	AT	2	101.6				99	97	85	2
WGZ22_663	2022	F	X	Reichersberg (Nbrau)	AT	2	81.7	9.1	56.5		99	96	83	3
				Reichersberg (Nfutter)	AT	2	89.5	10.8			97	89	67	3
				Aspachhof	DE	2	88.5	10.0	02.			0,	0,	3
				Großnondorf	AT	2	97.1	11.7	50.0	62.7	99	98	93	2
		_		Marchtrenk	AT	2	100.2	_	44.8		96	90	80	3
WGZ22_664	2022	В	X	Osijek	HR	2	70.9			5 7.7				2
				Probstdorf	AT	2	68.8	15.4	45.5		95	88	78	2
				Reichersberg	AT	2	78.3	11.0	49.0	63.7	98	96	88	3
				Aspachhof	DE	2	86.2							3
				Großnondorf	AT	2	97. 9	<u>12</u> .4		64.5	100	98	94	2
WGZ22_665	2022	В	X	Marchtrenk	AT	2	111.1	<u>12</u> .9	<u>49</u> .3	66.5	99	97	89	3
	2022	ט	1 *	Osijek	HR	2	8 5.3			65.1				2
				Probstdorf	AT	2	77.7	14.9			94	82	72	2
				Reichersberg	AT	2	76.6	11.4	44.1	65.8	97	89	61	3

Name	Jahr	Brau- oder Futtergerste	WP	Standort	Land	Parzellenanzahl	Kornertrag Kornertrag	% Rohproteingehalt	Tausendkorngewicht	ন Hektolitergewicht	Sortierung > 2,2 mm (Marktware)	Sortierung > 2,5 mm (Vollgerste)	Sortierung > 2,8 mm	Intensität des Trockenstresses für die Kultur
	7	Н		Aspachhof	DE	2	87.6							3
				Großnondorf	AT	2	95.6	13.2	52.6	65.4	100	98	94	2
WC722 (((2022	ъ	v	Marchtrenk	AT	2	101.1	13.2	49.5	64.8	99	96	89	3
WGZ22_666	2022	В	X	Osijek	HR	2	74.8			64.5				2
				Probstdorf	AT	2	78.6	15.8	47.0	66.7	97	91	76	2
				Reichersberg	AT	2	78.6	11.2	49.8	64.1	99	95	82	3
				Hildesheim	DE	2	100.7							4
				Marchtrenk	AT	2	112.4	<u>12</u> .2	53.2	64. 3	99	98	92	3
				Niedertraubling	DE	2	<u>90</u> .9							2
WGZ22_667	2022	F	X	Poppenhausen	DE	2	88.0							2
				Probstdorf	AT	2	91.2	13. 8	46.3	62.7	95	84	71	2
				Reichersberg	AT	2	<u>90</u> .0	10.9	44.6	65.0	97	84	58	3
				Staasdorf	AT	2	103.8	13.6	45.3	64.2	97	91	75	2
				Hildesheim	DE	2	102.7							4
				Marchtrenk	AT	2	109.7	11.0	53.8	64. 3	99	97	90	3
				Niedertraubling	DE	2	<u>99.</u> 3							2
WGZ22_668	2022	F	X	Poppenhausen	DE	2	88.4							2
				Probstdorf	AT	2	87 .7	13.4	51. 0	65.8	94	84	70	2
				Reichersberg	AT	2	89 .8	9.6	<u>50</u> .8	67.0	98	91	71	3
				Staasdorf	AT	2	99.5	13.6	47.2	65.8	97	85	66	2

Tabelle 26: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien der zweizeiligen Wintergerste im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf der nächsten Seite.

Name	Jahr	Brau- oder Futtergerste	Ь	Standort	Land	Parzellenanzahl	Datum Ährenschieben	g Wuchshöhe	Lagerung	Mehltau (ERYSIPHE GRAMINIS)	Zwergrost (PUCCINIA HORDEI)	Netzflecken (PYRENOPH. 6- TERES)	Rhyncosporium Blattflecken	Ramularia-Blattflecken	Mängel nach Winter	Neigung zu Halmknicken	Intensität des Trockenstresses für die Kultur
Ž	Ja	Bı	WP	_			1.Jan	CIII				JUII. 1 - J	1	1			
				Gerhaus	AT	2	127		1.0								2
WC722 2	2022	F	X	Gleisdorf	AT	2	133 125	00	1.0								4
WGZ22_2	2022	Г	Λ	Großenzersdorf	AT	2	128	80	5.0	2.5							4
				Pöchlarn St. Florian	AT AT	2	128	85	3.Ψ 4.0	<u>2</u> ,5				6.0			4
				Gerhaus	AT	2	129	_0 <i>3</i>	4.0					<u>υ.</u> υ			2
				Gleisdorf	AT	2	136		1.0								4
WGZ22_3	2022	F		Großenzersdorf	AT	2	125	85	1.0								2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2022	-		Pöchlarn	AT	2	131		1.5	2.0							4
				St. Florian	AT	2	129	90	3.5					6.5			4
				Gerhaus	AT	2	127		-								2
				Gleisdorf	AT	2	134		1.0								4
WGZ22_5	2022	F		Großenzersdorf	AT	2	125	85									2
				Pöchlarn	AT	2	129		2.5	2.0							4
				St. Florian	AT	2	129	85	2.0	_				8.0			4
				Gerhaus	AT	2	130										2
				Gleisdorf	AT	2	136		1.0								4
WGZ22_16	2022	F	X	Großenzersdorf	AT	2	128	95									2
				Pöchlarn	AT	2	130		1.0	1.5							4
				St. Florian	AT	2	129	110	2.0					5.0			4
				Gerhaus	AT	2	128										2
				Gleisdorf	AT	2	135		1.0								4
WGZ22_19	2022	F		Großenzersdorf	AT	2	127	73									2
				Pöchlarn	AT	2	129		1.0	2.5							4
				St. Florian	AT	2	128	80	1.0					4.5			4
				Gleisdorf	AT	2	135		1.0								4
WGZ22_22	2022	F	X	Pöchlarn	AT	2	131		1.0	1.5							4
				St. Florian	AT	2	63	100	4.5					7.5			4

Name	Jahr	Brau- oder Futtergerste	WP	Standort	Land	Parzellenanzahl	Datum Ährenschieben	Wuchshöhe Wuchshöhe	Lagerung	Mehitau (ERYSIPHE GRAMINIS)	Zwergrost (PUCCINIA HORDEI)	Netzflecken (PYRENOPH. G-TERES)	Rhyncosporium Blattflecken	Ramularia-Blattflecken	Mängel nach Winter	Neigung zu Halmknicken	Intensität des Trockenstresses für die Kultur
				Gleisdorf	AT	2	135		1.0								4
WGZ22_28	2022	F	X	Pöchlarn	AT	2	129		3.0	2.0							4
				St. Florian	AT	2	63	95	2.5					4.5			4
				Gerhaus	AT	2	130										2
WGZ22_76	2022	F		Gleisdorf	AT	2	134	88									4
				Großenzersdorf	AT	2	127			3.5							2
				Gerhaus	AT	2	130										2
WGZ22_78	2022	F		Gleisdorf	AT	2	134	78									4
				Großenzersdorf	AT	2	127			2.0							2
				Marchtrenk	AT	2	134	114	3.9						1.9		3
WGZ22_92	2022	F		Probstdorf	AT	2	129	104	3.0		2.2				1.5		2
				Reichersberg	AT	2	132	88	2.0	1.0	5.6	3.0	1.0	4.3	1.8	2.4	3
				Marchtrenk	AT	2	133	99	2.9						1.6		3
WGZ22_109	2022	F		Probstdorf	AT	2	125	102	2.9		3.9				1.7		2
				Reichersberg	AT	2	132	78	1.0	1.0	4.9	4.0	2.0	4.8	2.0	2.2	3
				Marchtrenk	AT	2	134	102	2.7						2.0		3
WGZ22_123	2022	F		Probstdorf	AT	2	128	102	1.2		2.0				1.7		2
				Reichersberg	AT	2	133	80	1.0	1.0	5.0	4.0	1.5	4.5	2.5	1.8	3
				Marchtrenk	AT	2	131	118	3.7						2.2		3
WGZ22_656	2022	F	X	Probstdorf	AT	2	126	<u>10</u> 6	3.2		3.3				1.4		2
				Reichersberg	AT	2	131	88	1.0	1.0	5.5	3.5	1.5	5.3	2.4	3.2	3
				Marchtrenk	AT	2	133	110	3.2						1.6		3
WGZ22_657	2022	F	X	Probstdorf	AT	2	128	110	3.6		1.9				1.9		2
				Reichersberg	AT	2	133	80	1.0	1.0	5.1	3.5	1.0	4.8	2.0	4.0	3
				Marchtrenk	AT	2	132	106	3.1						2.0		3
WGZ22_658	2022	F	X	Probstdorf	AT	2	128	104	3.7		2.1				0.8		2
				Reichersberg	AT	2	132	86	2.0	1.0	5.5	3.0	1.1	4.8	2.0	4.1	3

ne	ır	Brau- oder Futtergerste		Standort	рі	Parzellenanzahl	Datum Ährenschieben	Wuchshöhe	Lagerung	Mehltau (ERYSIPHE GRAMINIS)	Zwergrost (PUCCINIA HORDEI)	Netzflecken (PYRENOPH. TERES)	Rhyncosporium Blattflecken	Ramularia-Blattflecken	Mängel nach Winter	Neigung zu Halmknicken	Intensität des Trockenstresses für die Kultur
Name	Jahr	Bra	WP	Sta	Land	Par	1.Jan	cm			I	3on.1-9					Inte Ku]
				Marchtrenk	AT	2	135	117	3.7						2.1		3
WGZ22_659	2022	F	X	Probstdorf	AT	2	130	108	1.5		2.8				1.5		2
				Reichersberg	AT	2	133	85	1.0	1.0	5.6	3.0	2.0	4.8	2.1	2.1	3
				Aspachhof	DE	2	135		1.0						2.5		3
				Großnondorf	AT	2				2.0	3.0				1.4		2
WGZ22_661	2022	В	X	Marchtrenk	AT	2	132	112	3.8						3.0		3
WGZZZ_001	2022	ъ	71	Osijek	HR	2			2.9								2
				Probstdorf	AT	2	127	103	5.9		3.5						2
				Reichersberg	AT	2	133	75	1.6		4.0	4.5	3.0	5.3		2.6	3
				Marchtrenk	AT	2	131	113	4.1						2.0		3
				Probstdorf	AT	2	125	<u>10</u> 6	2.0		2.5				2.0		2
				Reichersberg (Nbrau)	AT	2	131	83	2.0						2.0		3
				Reichersberg (Nfutter)	AT	2	131	85	3.0		5.2	4.8	4.0	4.5	2.0	7.8	3
WGZ22_662	2022	В	X	Aspachhof	DE	2	134		1.0						1.5		3
WGZZZ_00Z	2022	ъ	Λ	Großnondorf	AT	2				2.5	1.5				2.5		2
				Marchtrenk	AT	2	131	113	4.8						2.5		3
				Osijek	HR	2			5.2								2
				Probstdorf	AT	2	126	110	6.4		3.0						2
				Reichersberg	AT	2	131	88	3.4		4.8	4.5	3.0	4.8	1.6	7.4	3
				Marchtrenk	AT	2	134	123	3.0						2.5		3
WGZ22_663	2022	F	X	Probstdorf	AT	2	128	<u>10</u> 8	1.3		2.0				1.5		2
11 GEEE_003	2022	1	Λ	Reichersberg (Nbrau)	AT	2	134	86	1.0						2.5	0.8	3
				Reichersberg (Nfutter)	AT	2	134	90	0.9		4.5	3.0	1.0	4.3	2.0	1.1	3
				Aspachhof	DE	2	137		1.0						1.7		3
				Großnondorf	AT	2				3.5	2.0				2.0		2
WGZ22_664	2022	В	X	Marchtrenk	AT	2	134	117							2.5		3
113222_004	2022	ע	21	Osijek	HR	2			<u>3</u> .4								2
				Probstdorf	AT	2	127	103	6.2		4.0						2
				Reichersberg	AT	2	133	87	1.6		5.0	3.0	2.0	4.5		6.6	3
				Aspachhof	DE	2	135		1.0						1.5		3
				Großnondorf	AT	2				3.0	1.0				1.2		2
WGZ22_665	2022	В	X	Marchtrenk	AT	2	132	114							3.0		3
.1.3222_003	2022	ע	21	Osijek	HR	2			2.0								2
				Probstdorf	AT	2		110			2.5						2
				Reichersberg	AT	2	132	80	1.1		3.8	4.5	3.5	4.0	1.9	3.5	3

Name	Jahr	Brau- oder Futtergerste	WP	Standort	Land	Parzellenanzahl	Datum Ährenschieben	Wuchshöhe Wuchshöhe	Lagerung	Mehltau (ERYSIPHE GRAMINIS)	Zwergrost (PUCCINIA HORDEI)	Netzflecken (PYRENOPH. G-TERES)	Rhyncosporium Blattflecken	Ramularia-Blattflecken	Mängel nach Winter	Neigung zu Halmknicken	Intensität des Trockenstresses für die Kultur
				Aspachhof	DE	2	136		1.0						1.5		3
				Großnondorf	AT	2				3.0	1.0				2.7		2
WGG22	2022	ъ	37	Marchtrenk	AT	2	133	107	3.3						3.0		3
WGZ22_666	2022	В	X	Osijek	HR	2			2.8								2
				Probstdorf	AT	2	127	108	5.8		2.5						2
				Reichersberg	AT	2	133	85	1.1		4.3	3.6	2.0	4.9	2.7	4.1	3
				Hildesheim	DE	2											4
				Marchtrenk	AT	2	131	112	3.3						2.0		3
				Niedertraubling	DE	2	129	87									2
WGZ22_667	2022	F	X	Poppenhausen	DE	2									2.5		2
				Probstdorf	AT	2	125	111	5.0		2.5						2
				Reichersberg	AT	2	130	86	1.1		4.7	4.1	2.1	5 .0	2.0	4.6	3
				Staasdorf	AT	2	126	98	2.0	3.0				2.5		2.0	2
				Hildesheim	DE	2											4
				Marchtrenk	AT	2	132	118	3.1						2.5		3
				Niedertraubling	DE	2	132	102									2
WGZ22_668	2022	F	X	Poppenhausen	DE	2									2. 0		2
				Probstdorf	AT	2	128	114	4.5		2.0						2
				Reichersberg	AT	2	132	88	2.8		5.5	4. 1	2.5	5 .0	_	4.0	3
				Staasdorf	AT	2	130	106	1.0	4.0				2.5		2.0	2

Abbildung 14: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche mit Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten Zuchtlinien der mehrzeiligen Wintergerste und der Standardsorten *Adalina, Journey, KWS Meridian* und *SU Jule*.

Tabelle 27: Ausgewählte erhobene Parameter vielversprechender Zuchtlinien der mehrzeiligen Wintergerste im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf den nächsten Seiten.

Name WP Land Parzellenanzahl Parzellenanzahl Rohproteingehalt Rohproteingehalt Sortierung > 2,2 mm (Marktware) Sortierung > 2,5 mm (Vollgerste) Sortierung > 2,8 mm Sortierung > 2,8 mm	Intensität des Trockenstresses für die Kultur
Gerhaus AT 2 67.7 62.4	2
WGM22_17 2022 Gleisdorf AT 2 101.3 55.0	4
St. Florian AT 2 \$1.6 11.8 96 67 20	4
Gerhaus AT 2 68.7 62.6	2
WGM22_19 2022 Gleisdorf AT 2 105.4 36.8	4
St. Florian AT 2 \$1.6 11. 97 74 26	4
Marchtrenk AT 2 112.6 10.6 39.5 64.3 98 95 84	3
WGM22_94 2022 Probstdorf AT 2 104.2 9.9 39.7 66.1 100 96 83	2
Reichersberg AT 2 1/3.5 8.7 1/38.2 1/63.1 97 87 69	3
Reichersberg AT 2 86.9 9.3 38.2 63 6 97 86 68	3
Marchtrenk AT 2 109.0 11.7 42.6 57.2 98 93 77	3
WGM22_97 2022 Probstdorf AT 2 100.2 10.3 41.2 61.7 98 93 67	2
Reichersberg A1 2 \$1.1 9.1 42.9 61.1 98 88 /1	3
Reichersberg AT 2 91.6 9.8 38.8 58.4 98 80 53	3
Reichersberg AT 2 105.9 47.5 62.1 87 59	3
WGM22_317 2022 Staasdorf AT 2 95.9 41.4 62.8 83 53	2
Marchtrenk AT 2 84.1 46.7 62.3 84 55	3
Probstdorf AT 2 107.6 45.0 66.6 84 54	2
Hildesheim DE 1 103.1	4
WGM22_414 2022 Probstdorf AT 1 102.5 49.8 68.0 88 61	2
Reichersberg AT 1 85.3 472 65.9 86 57	
Hildesheim DE 1 108.5	4
WGM22_539 2022 Probstdorf AT 1 99.5 43.8 67.2 85 57	2
Reichersberg AT 1 86.8 39.3 59.4 77 43	3
Hildesheim DE 1 105.6	4
WGM22_549 2022 Probstdorf AT 1 98.6 46.1 69.0 86 58	
Reichersberg AT 1 83.5 42.0 64.3 80 49	
Hildesheim DE 1 110.6	4
WGM22_604 2022 Probstdorf AT 1 99.5 45.9 69.8 88 62 Reichersberg AT 1 89.0 45.3 59.6 82 51	2
	3
	4
WGM22_630 2022 Probstdorf AT 1 106.2 39.5 69.0 80 49 Reichersberg AT 1 74.4 38.0 60.2 76 41	3
Reichersberg AT 2 123 45.6 60.4 85 56	
Reichersberg A1 2 1253 43.6 60.4 83 36 Staasdorf AT 2 98.4 37.4 64.2 79 46	
WGM22_728 2022 X Staasuoff AT 2 29.4 37.4 64.2 79 40	3
Probstdorf AT 2 30.5 41.8 63.1 81 50	

Name	Jahr	WP	Standort	Land	Parzellenanzahl	kornertrag	% Rohproteingehalt	Tausendkorngewicht	F Hektolitergewicht	Sortierung > 2,2 mm (Marktware)	Sortierung > 2,5 mm (Vollgerste)	Sortierung > 2,8 mm	Intensität des Trockenstresses für die Kultur
			Biebergau	DE	2	69.4							3
			Sömmerda	DE	2	90.2							2
			Hildesheim	DE	2	92.7							4
			Gudow	DE	2	98.1							3
			Rancin	DE	2	92.5							2
WGM22_729	2022	X	Probstdorf	AT	2	93.2		47.3	64.1		91	66	2
			Staasdorf	AT	2	95.8		43.7	64.0		88	61	2
			Marchtrenk	AT	2	126. 0		49.1	63.2		91	67	3
			Reichersberg	AT	2	90.6		45.9	63.7		88	61	3
			Hnevceves	CZ	2								2
			Kujavy	CZ	2	149.9			65.1				3
			Biebergau	DE	2	67.4			00.1				3
			Sömmerda	DE	2	91.3							2
			Hildesheim	DE	2	87.2							4
			Gudow	DE	2	99.6							3
			Rancin	DE	2	99.0							2
			Probstdorf	AT	2	95.8		46.1	65. 3		89	62	2
			Staasdorf	AT	2	96.0			63.6		87	59	2
WGM22_730	2022	X	Marchtrenk	AT	2	114.5		52.0			91	66	3
WGW122_730	2022	Λ	Reichersberg	AT	2	\$2.7		48.0	65. 0		86	58	3
			Hnevceves	CZ	2	φ2.7		40. 0	03.0		80	56	2
				CZ	2	137.2			64 .0				3
			Kujavy	DE	4	90.1			0410				4
			Hildesheim (V34)	AT	4	90.1 102.6		12.0	66 1		84	55	2
			Staasdorf (V34)	AT	4			43.9			87	60	3
			Reichersberg (V34)			78.0		48.3				-	
			Probstdorf (V34)	AT	4	101.6		50.8	70.7		91	65	2
			Biebergau	DE	2	77.7							3
			Sömmerda	DE	2	95.5							2 4
			Hildesheim	DE	2	88.1							
			Gudow	DE	2	100.2							3
WCM22 F21	2022	37	Rancin	DE	2	93.7		47 b	C 1 =		0.0	(1	2
WGM22_731	2022	X	Probstdorf Standarf	AT	2	92.7 99.3		47.9			88 87	61	2 2
			Staasdorf	AT AT	2	99.3 120.3		46.6			90	59 64	3
			Marchtrenk Reichersberg	AT	2	85.1		52.5 46.4			83	53	3
				CZ	2	0 3.1		4 0,4	03.1		0.3	23	2
			Hnevceves	CZ	2	134.7			68.5			<u> </u>	3
			Kujavy						08.3				
			Hildesheim	DE	2	100.9		M2 5	615		0.4	<i>F F</i>	4
WGM22_732	2022	X	Staasdorf	AT	2	10 8 .9		42.5			84	55	2 2
			Probstdorf	AT					70.0		89	62	
			Reichersberg	AT	2	84.2		42.8	65.8		80	47	3

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Kornertrag	% Rohproteingehalt	Tausendkorngewicht	යි Hektolitergewicht	Sortierung > 2,2 mm (Marktware)	Sortierung > 2,5 mm (Vollgerste)	Sortierung > 2,8 mm	Intensität des Trockenstresses für die Kultur
'				. 1	<u> </u>		1	U	0				Ir K
	Ji	M				165.0			co.c				_
			Gerhaus	AT	2	65.9	115		58.6	0.0	0.2		2
WGM22_749	2022	X	Gerhaus Großenzersdorf	AT AT	2	65.9 8 4.8	11.7		58.6 63.6	98	93	67	2
			Gerhaus Großenzersdorf Pöchlarn	AT AT AT	2 2 2	84.8	11.7		63.6	98	93	67	2 4
WGM22_749	2022	X	Gerhaus Großenzersdorf Pöchlarn Gerhaus	AT AT AT AT	2 2 2 2	8 4.8 56.9			63 651.8				2 4 2
			Gerhaus Großenzersdorf Pöchlarn	AT AT AT	2 2 2	84.8	11.7		63.6	98	93	67	2 4
WGM22_749	2022	X	Gerhaus Großenzersdorf Pöchlarn Gerhaus	AT AT AT AT	2 2 2 2	8 4.8 56.9			51.8 62.5				2 4 2
WGM22_749	2022	X	Gerhaus Großenzersdorf Pöchlarn Gerhaus Großenzersdorf	AT AT AT AT AT	2 2 2 2 2	\$4.8 56.9 91.5			51.8 62.5 \$5.8				2 4 2 2
WGM22_749	2022	X	Gerhaus Großenzersdorf Pöchlarn Gerhaus Großenzersdorf Pöchlarn	AT AT AT AT AT AT AT AT	2 2 2 2 2 2 2	\$4.8 56.9 91.5			51.8 62.5	100	98	82	2 4 2 2 4

Tabelle 28: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien der mehrzeiligen Wintergerste im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf den nächsten Seiten.

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Datum Ährenschieben da Ahrenschieben da Ahrenschieben	Wuchshöhe	Lagerung	Mehltau (ERYSIPHE GRAMINIS)	Zwergrost (PUCCINIA HORDEI)	6-1:0 Ramularia-Blattflecken	Neigung zu Ährenknicken	Neigung zu Halmknicken	Mängel nach Winter	Intensität des Trockenstresses für die Kultur
	J		Gerhaus	AT	2	130				I	1				2
WGM22_17	2022		Gleisdorf	AT	2	135		1.0							4
WGW122_17	2022		St. Florian	AT	2	128	110				7.5				4
			Gerhaus	AT	2	130	1 0	0.0			1.0				2
WGM22_19	2022		Gleisdorf	AT	2	135		1.0							4
			St. Florian	AT	2	127	110				7.0				4
			Marchtrenk	AT	2	129	119	3.2			7.0			3	3
			Probstdorf	AT	2	124	105	2.0		4.0				1	2
WGM22_94	2022		Reichersberg	AT	2	130	81	1.0					3.9	2	3
			Reichersberg	AT	2	129	85	1.0		5.3	5.5		6.2	3	3
			Marchtrenk	AT	2	129	115	5.3			- 10			2	3
			Probstdorf	AT	2	123	105	1.7		4.0				1	2
WGM22_97	2022		Reichersberg	AT	2	130	82	1.5					7.1	2	3
			Reichersberg	AT	2	128	85	1.9		4.3	4.5		8.0	2	3
			Reichersberg	AT	2	131	137	3.9						2	3
WCM22 215	2022		Staasdorf	AT	2	126	113	2.1	2.0				7.5		2
WGM22_317	2022		Marchtrenk	AT	2	129	90	2.0					4.0	1	3
			Probstdorf	AT	2	125	120	2.9		4.5					2
			Hildesheim	DE	1										4
WGM22_414	2022		Probstdorf	AT	1	125	130	1.0		3.0					2
			Reichersberg	AT	1	131	90	2.0					5.0	1	3
			Hildesheim	DE	1										4
WGM22_539	2022		Probstdorf	AT	1	124	110	1.0		3.0					2
			Reichersberg	AT	1	129	75	1.0					4.0	1	3
			Hildesheim	DE	1				-						4
WGM22_549	2022		Probstdorf	AT	1	125	105	1.0		2.0					2
			Reichersberg	AT	1	131	80	1.0					3.0	1	3
			Hildesheim	DE	1	n									4
WGM22_604	2022		Probstdorf	AT	1	124	110			2.0					2
			Reichersberg	AT	1	133	85	1.0					2.0	1	3
			Hildesheim	DE	1	П									4
WGM22_630	2022		Probstdorf	AT	1	124	105	1.0		3.0					2
			Reichersberg	AT	1	132		2.0			ļ		5. 0	2	3
			Reichersberg	AT	2	132	135	3.5						1	3
WGM22_728	2022	X	Staasdorf	AT	2	129	115		2.0				7.5	-	2
			Marchtrenk	AT	2	133	90	1.0		a c			3.5	2	3
			Probstdorf	AT	2	127	116	2.7		3.0					2

16			Standort	ď	Parzellenanzahl	Datum Ährenschieben	Wuchshöhe	Lagerung	Mehltau (ERYSIPHE GRAMINIS)	Zwergrost (PUCCINIA HORDEI)	Ramularia-Blattflecken	Neigung zu Ährenknicken	Neigung zu Halmknicken	Mängel nach Winter	Intensität des Trockenstresses für die Kultur
Name	Jahr	WP	Star	Land	Parz	1.Jan	cm			Bor	ı.1-9				Intensit Kultur
WGM22_729	2022	X	Biebergau	DE	2										3
			Sömmerda	DE	2										2
			Hildesheim	DE	2										4
			Gudow	DE	2	136	113					5.0	2.0		3
			Rancin	DE	2	138	85			-		7.0	1.9		2
			Probstdorf	AT	2	127	124	2.7		2.4					2
			Staasdorf	AT	2	130	110	1.0	2.5				7.5		2
			Marchtrenk	AT	2	132	138	3.8						3	3
			Reichersberg	AT	2	132	95	1.5					4.0	2	3
			Hnevceves	CZ	2		L _								2
			Kujavy	CZ	2	133	95					2.0			3
WGM22_730	2022	X	Biebergau	DE	2										3
			Sömmerda	DE	2										2
			Hildesheim	DE	2	105	112			1		- A	2.0		4
			Gudow	DE DE	2	135 137	113 85					5.0 4.5	2.0 1.6		3 2
			Rancin Probstdorf	AT	2	127	118	3.1		3.2		4. D	1.0		2
			Staasdorf	AT	2	128	110	1.0	2.0	₽.∠			3.4		2
			Marchtrenk	AT	2	132	131	3.3	2.0				. .+	2	3
			Reichersberg	AT	2	131	95	1.0					3.0	2	3
			Hnevceves	CZ	2	131		1.0					J.0		2
			Kujavy	CZ	2	133	99					1.0			3
			Hildesheim (V34)	DE	4	133						1.0			4
			Staasdorf (V34)	AT	4	128	114	1.0	2.0				3.1		2
			Reichersberg (V34)	AT	4	132	92	1.0	2.0				3.3	2	3
			Probstdorf (V34)	AT	4	126	116			3.3					2
WGM22_731			Biebergau	DE	2						1				3
			Sömmerda	DE	2					İ					2
			Hildesheim	DE	2										4
			Gudow	DE	2	136	113					2.5	2.0		3
			Rancin	DE	2	138	80					5.0	1.3		2
	2022	X	Probstdorf	AT	2	127	115			2.6					2
			Staasdorf	AT	2	129	110		2.0		<u> </u>	<u> </u>	3.0		2
			Marchtrenk	AT	2	132	134							2	3
			Reichersberg	AT	2	133	93	2.0					4.5	2	3
			Hnevceves	CZ	2						<u> </u>				2
			Kujavy	CZ	2	134	96					1.5			3
WGM22_732	2022	X	Hildesheim	DE	2	100	102	1.2	2.0				1.0		4
			Staasdorf	AT	2	126	103		2.0	2.2	-	-	1.0		2
			Probstdorf	AT	2	124	97	1.0		2.2			h a	1	2
			Reichersberg	AT	2	131	82	0.9				L	2.3	I	3

Name	Jahr	WP	Standort	Land	Parzellenanzahl	ab Datum Ährenschieben	Wuchshöhe Wuchshöhe	Lagerung	Mehltau (ERYSIPHE GRAMINIS)	Zwergrost (PUCCINIA HORDEI)	- Ramularia-Blattslecken	Neigung zu Ährenknicken	Neigung zu Halmknicken	Mängel nach Winter	Intensität des Trockenstresses für die Kultur
<u> </u>		>	∑		Ь	1.Jan									
	ſ	M			2	1.Jan 128									2
WGM22_749	2022	X	Gerhaus Großenzersdorf	AT AT		1.Jan 128 126	90	1.0	2.0						
WGM22_749			Gerhaus	AT	2	128		1.0	2.0						2
WGM22_749			Gerhaus Großenzersdorf	AT AT	2 2	128 126		1.0							2 2
WGM22_749	2022		Gerhaus Großenzersdorf Pöchlarn	AT AT AT	2 2 2	128 126 128									2 2 4
	2022	X	Gerhaus Großenzersdorf Pöchlarn Gerhaus	AT AT AT AT	2 2 2 2	128 126 128 130 127	90	1.0	3.5						2 2 4 2
WGM22_755	2022	X	Gerhaus Großenzersdorf Pöchlarn Gerhaus Großenzersdorf	AT AT AT AT AT	2 2 2 2 2	128 126 128 130 127 28 131	90	1.0	3.5 2.5 4.5						2 2 4 2 2
	2022	X	Gerhaus Großenzersdorf Pöchlarn Gerhaus Großenzersdorf Pöchlarn	AT AT AT AT AT AT AT	2 2 2 2 2 2 2	128 126 128 130 127	90	1.0	3.5						2 2 4 2 2 4

3.1.3 SOMMERHAFER

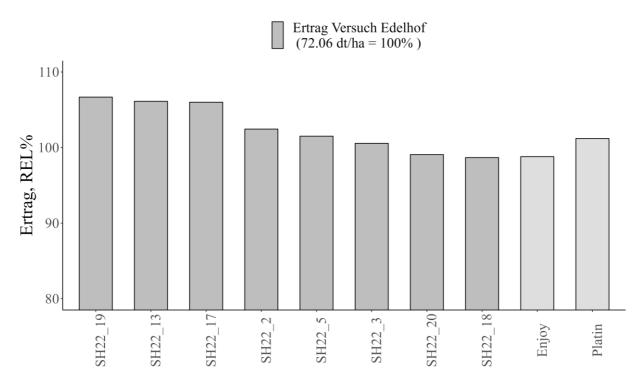


Abbildung 15: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche ohne Trockenstress (grau) der acht im zweiten Projektjahr ertragreichsten Zuchtlinien des Sommerhafers und der Standardsorten *Enjoy* und *Platin*.

Aufgrund der untergeordneten Bedeutung der Kulturart wurde bei Sommerhafer im vergangenen Projektjahr 2022 nur ein Versuch am Standort Edelhof (Waldviertel) angelegt. Am Versuchsstandort trat nur ein niedriger Trockenstress auf, dennoch konnten einige Zuchtstämme gegenüber den Standardsorten *Enjoy* und *Platin* überzeugen (Abbildung 15). Die Qualitäten dieser Zuchtstämme sind in Tabelle 29 wiedergegeben.

Tabelle 29: Ausgewählte bonitierte Parameter vielversprechender Sommerhafer-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter zur Feststellung ihres Verhaltens in der Umwelt.

a		lort		Parzellenanzahl	Datum Ährenschieben	Kornertrag	Hektolitergewicht	Tausendkorngewicht	Wuchshöhe	Reifebonitur	Netzflecken	Schlitzsieb >2,5mm	Schlitzsieb 2,5 – 2,2 mm	Schlitzsieb 2,2 – 2,0 mm	Intensität des Trockenstresses für die Kultur
Name	Jahr	Standort	Land	Parze	Tage ab 1. Jan	dt/ha	kg	g TM	cm	Tage ab 1. Jan		%	%	%	Inten für di
SH22_2	2022	Edelhof	AT	2	164	7 3.8	54.4	41.5	111	201	4.0	76.7	20	2.5	3
SH22_3	2022	Edelhof	AT	2	163	72.5	5 2.5	40.4	108	200	6.0	53.2	39.3	5.5	3
SH22_5	2022	Edelhof	AT	2	164	73.2	5 4.0	40.3	107	201	4 .5	74.1	21.3	3.6	3
SH22_13	2022	Edelhof	AT	2	165	76.5	54.4	39.1	110	201	5 .0	72.4	21.4	4.5	3
SH22_17	2022	Edelhof	AT	2	164	76.4	5 1.9	40.8	109	202	5 .0	74.8	20.9	3.2	3
SH22_18	2022	Edelhof	AT	2	163	71.1	50.5	43.2	102	203	3.5	77.5	18.2	3.3	3
SH22_19	2022	Edelhof	AT	2	161	76.9	50.5	42.7	115	202	7.0	78.1	15.9	4	3
SH22_20	2022	Edelhof	AT	2	159	71.4	50.7	41.9	107	201	6.5	73.2	21.7	3.9	3

3.1.4 WINTERTRITICALE

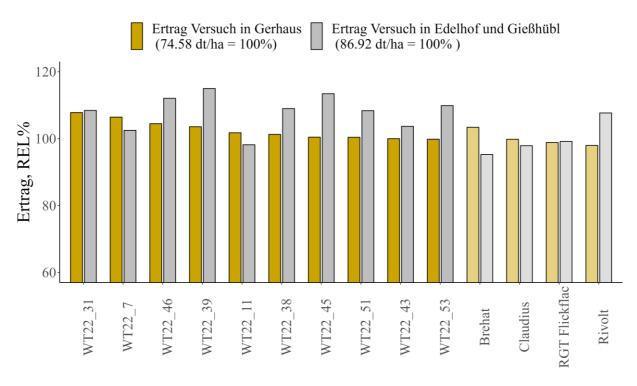


Abbildung 16: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche mit Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten Wintertriticale-Zuchtlinien und der Standardsorten *Brehat, Claudius, RGT Flickflac* und *Rivolt*.

Triticale, eine Kreuzung aus Weizen und Roggen, hat in den letzten Jahren durchaus an Bedeutung gewonnen und konnte seine Anbaufläche ausweiten. Ursprünglich wurde diese Kulturart für schwächere Standorte gezüchtet, weswegen sich der Anbau in Österreich vormals auf die klimatisch anspruchsvolleren Regionen Waldviertel, Mühlviertel, etc. beschränkt haben. Durch eine züchterische Verbesserung erhofft man sich eine Ausdehnung des Anbaugebietes, folglich wurden Triticale-Versuche auch im zweiten KLIMAFIT 2 Projektjahr durchgeführt. An 3 Versuchsstandorten (Edelhof, Gerhaus und Gießhübl in Österreich) wurden im zurückliegenden Projektjahr 7 Versuche angelegt, wobei der Trockenstress sich in Grenzen hielt. Lediglich in Gerhaus – an dem 3 Versuche angelegt wurden – wurde ein niedriger Trockenstress festgestellt, die anderen 2 Standorte (mit je 2 Versuchen) waren durch eine gute Wasserversorgung für diese Kulturart gekennzeichnet. Insbesondere der Standorte Edelhof stach mit hohen Ertragsleistungen der dort in die Versuche gestellten Zuchtlinien hervor. Die ebenfalls mit in die Versuche gestellten Standardsorten *Brehat, Claudius, RGT Flickflac* und *Rivolt* zeigten dabei gute Ertragsergebnisse und ein stabiles Ertragsniveau auch unter leichtem Trockenstress. Entscheidender waren die erzielten Ergebnisse der neuen Zuchtlinien bei den ebenfalls miterhobenen Qualitäten, bzw. ihrem Verhalten in der Umwelt.

Generell gilt die Triticale als anfällig für Blattkrankheiten. Im vergangenen Projektjahr konnte zum ersten Mal seit 2019 wieder natürlicher Gelbrostbefall bei Triticale festgestellt werden und gezielt hinsichtlich Toleranzen selektiert werden (Tabelle 30). Aufgrund der zunehmend milden Winter ist bei dieser Krankheit von sporadischen, aber dennoch gehäuft auftretenden Epidemien auszugehen, tolerante Triticalesorten sind also von großem Interesse für die Landwirtschaft. Insgesamt 4 vielversprechende Zuchtstämme wurden im vergangenen Projektjahr zur amtlichen Wertprüfung angemeldet.

Tabelle 30: Ausgewählte bonitierte Parameter vielversprechender Wintertriticale-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf der nächsten Seite.

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Kornertrag (A)	Hektolitergewicht	Tage ab 1.Jan	g Wuchshöhe	Lagerung	Mehltau (ERYSIPHE GRAMINIS)	6-1 Braunrost (P.TRIT., P. DISP.)	Gelbrost (PUCC, STRIIFORMIS)	Intensität des Trockenstresses für die Kultur
******	2022		Edelhof	AT	2	96.3	<u></u>	146	103	1.0	2.0		1.0	4
WT22_7	2022		Gerhaus	AT	2	79.4	7 2.4	131	110	1.0	1.0	2 ~	1.0	3
			Gießhübl	AT	2	\$1.9 92.3		135	105	1.0	1.0	3.5	1.0	4
WT22 11	2022		Edelhof Gerhaus	AT AT	2	75.9	69.8	142	105 115	1.0	3.5		1.0	3
WT22_11	2022		Gießhübl	AT	2	78.4	09.8	133	98	1.0	1.0	1.5	1.0	4
			Edelhof	AT	2	106.6		141	113	1.0	1.0	1.5	1.0	4
WT22_13	2022	X	Gerhaus	AT	2	72.0	7 2.4	129	118	1.0	1.0		1.0	3
VV 122_13	2022	71	Gießhübl	AT	2	84.8	<i>1</i> £ . ¬	132	105	1.0	1.0	1.5	1.0	4
			Edelhof	AT	2	110.9		146	120	1.0	1.0	1.5	1.0	4
WT22_19	2022	X	Gerhaus	AT	2	74.3	7 4.4	132	125	1.0	1.0		1.0	3
			Gießhübl	AT	2	88.6		135	113	1.0	1.0	3.0	1.0	4
			Edelhof	AT	2	111.1		145	118	1.0	2.0			4
WT22_27	2022	X	Gerhaus	AT	2	75.4	7 6.4	131	118	1.0	1.0		1.0	3
			Gießhübl	AT	2	93.5		134	113		1.0	1.5	1.0	4
			Edelhof	AT	2	102.7		143	120	2.5	1.5		1.0	4
WT22_31	2022		Gerhaus	AT	2	80.4	7 4.0	129	115		1.0			3
			Gießhübl	AT	2	85.8		134	115		1.0	6.5	1.0	4
			Edelhof	AT	2	107.2		144	115	1.0	1.0		1.0	4
WT22_38	2022		Gerhaus	AT	2		71.6	129	113		1.0			3
			Gießhübl	AT	2	8 2.3		132	105		1.0	4.0	1.0	4
			Edelhof	AT	2	105.4		144		1.0	1.5		1.0	4
WT22_39	2022		Gerhaus	AT	2	77.2	69.8	129	113		1.0			3
			Gießhübl		2	94.5		133	108		1.0	6.0	1.0	4
******	2022		Edelhof		2	112.1		144	125	1.0	1.5		1.0	4
WT22_42	2022	X	Gerhaus	AT	2		73 .8	129	118		1.0	4 -	1.0	3
			Gießhübl		2	87.1		134	120	1.0	1.0	4.5	1.0	4
W/T22 42	2022		Edelhof		2	98.5	76.2	143	123	1.0	1.0		1.0	4
WT22_43	2022		Gerhaus	AT	2	74.6	76.2	129	125		1.0	6.0	1.0	3
			Gießhübl	Αľ	2	81.8		133	113		1.0	6.0	1.0	4

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Kornertrag Kornertrag	Hektolitergewicht	de age I.J. Jatum Ährenschieben	g Wuchshöhe	Lagerung	Mehltau (ERYSIPHE	6- Braunrost (P.TRIT., P. DISP.)	Gelbrost (PUCC. STRIIFORMIS)	Intensität des Trockenstresses für die Kultur
			Edelhof	AT	2	101.9		142	118	1.0	2.0		1.0	4
WT22_45	2022		Gerhaus	AT	2	74.9	7 1.8	129	120		1.5			3
			Gießhübl	AT	2	95.3		133	113		1.5	6.0	1.0	4
			Edelhof	AT	2	102.2		146	118	1.0	2.0		1.0	4
WT22_46	2022		Gerhaus	AT	2	77.9	73 .3	132	120		1.5			3
			Gießhübl	AT	2	92.6		138	123		1.5	1.0	1.0	4
			Edelhof	AT	2	<u>99.</u> 6		145	115	1.0	1.5		1.0	4
WT22_51	2022		Gerhaus	AT	2	74.9	71.3	131	118		1.0			3
			Gießhübl	AT	2	88.8		135	113		1.0	6.5	1.0	4
			Edelhof	AT	2	98. 8	•	145	125	1.0	2.5		1.0	4
WT22_53	2022		Gerhaus	AT	2		70.2	131	123		2.0			3
			Gießhübl	AT	2	92.2		135	120		2.0	2.5	1.0	4

3.1.5 WINTERROGGEN

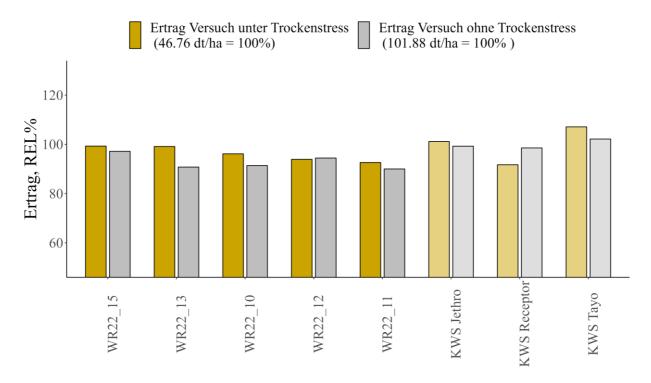


Abbildung 17: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche mit Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der fünf im zweiten Projektjahr ertragreichsten Zuchtlinien des Winterroggens und der Standardsorten KWS Jethro, KWS Receptor und KWS Tayo.

Im zweiten KLIMAFIT 2 Projektjahr wurden beim Winterroggen aufgrund seiner untergeordneten Bedeutung im österreichischen Agrarmarkt lediglich drei Versuche an drei Standorten angelegt, und zwar an den österreichischen Standorten Edelhof, Gerhaus und Obersiebenbrunn. Hier fiel vor allem der Standort Obersiebenbrunnen auf, an dem die Pflanzen im dort angelegten Versuch im zurückliegenden Projektjahr sehr unter der hohen Trockenheit litten. Die Ertragsleistung dieses Versuches fiel gegenüber den anderen beiden Versuchen deutlich ab (Abbildung 17). An den anderen beiden Standorten wurden innerhalb der Versuche nur geringer oder gar kein Trockenstress bemerkt. Bei allen drei angelegten Versuchen wurde ausschließlich Winterroggen angebaut, Sommerroggen wird im Projekt KLIMAFIT aufgrund des sehr geringen Anbaus in Österreich (97% des Roggens werden als Wintergetreide kultiviert), der fehlenden Züchtungsaktivitäten, und der zukünftig zu erwartenden trockenen Sommer nicht berücksichtigt. Auffällig bei den durchgeführten Versuchen war, dass die ermittelten Erträge der getesteten Zuchtlinien unter den ebenfalls mit angebauten Standardsorten KWS Jethro, KWS Receptor und KWS Tayo lag. Dennoch können bei der Bereitstellung von neuen, klimafitten Sorten auch andere Parameter ausschlaggebend sein, weswegen bei der Bonitur der Versuche einige Merkmale und ertragsrelevante Parameter mehr erhoben wurden (Tabelle 31). Von Seiten des Züchtungsunternehmens wurden im vergangenen Projektjahr 2 Kandidaten zur Wertprüfung angemeldet.

Tabelle 31: Ausgewählte bonitierte Parameter vielversprechender Winterroggen-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter zur Feststellung ihres Verhaltens in der Umwelt.

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Kornertrag Kornertrag	ন Hektolitergewicht	Datum Ähren(Rispen-)Schieben	Wuchshöhe Wuchshöhe	Lagerung	Mehitau (ERYSIPHE GRAMINIS)	Braunrost (P.TRIT, P. DISP.)	Schwarzrost	Intensität des Trockenstresses für die Kultur
<u> </u>			Edelhof	AT	2	92.8		135	150	2.5				4
WR22_4	2022	X	Gerhaus	AT	2	7 2.7	7 2.6					5.0	2.0	3
			Obersiebenbrunn	AT	2	39.1		128	149	5.0	2.0			1
			Edelhof	AT	2	92.9		134	150					4
WR22_5	2022	X	Gerhaus	AT	2	71.2	74.2					5.5	2.0	3
			Obersiebenbrunn	AT	2	32.7		129	145	4.5	2.0			1
			Edelhof	AT	2	120.0		134	140	3.0				4
WR22_10	2022		Gerhaus	AT	2	66.2	73. 6					4.0	3.0	3
			Obersiebenbrunn	AT	2	45.0		129	135	5.5	2.0			1
			Edelhof	AT	2	114.3		134	145	3.0				4
WR22_11	2022		Gerhaus	AT	2	69.2	75 .3					4.0	1.0	3
			Obersiebenbrunn	AT	2	43.3		129	140		2.5			1
			Edelhof	AT	2	119.8		134	145	4.5				4
WR22_12	2022		Gerhaus	AT	2		72 .9					6.0	1.0	3
			Obersiebenbrunn	AT	2	43.9		128	139	5. 0	2.0			1
*******	2022		Edelhof	AT	2	114.5		<u>13</u> 3	145	3.0		n . =		4
WR22_13	2022		Gerhaus	AT	2		78.0	4.50		- 0		4.5	3.0	3
			Obersiebenbrunn	AT	2	46.4		128	140		2.5			1
11/10/20 15	2022		Edelhof	AT	2	117.2	2 - 7	137	140	2.0		. .	4.0	4
WR22_15	2022		Gerhaus	AT	2	80.9	36.5	101	100	. .	2.0	5.0	4.0	3
			Obersiebenbrunn	AT	2	46.4		131	130	3 .5	3.0			1

3.1.6 RISPENHIRSE

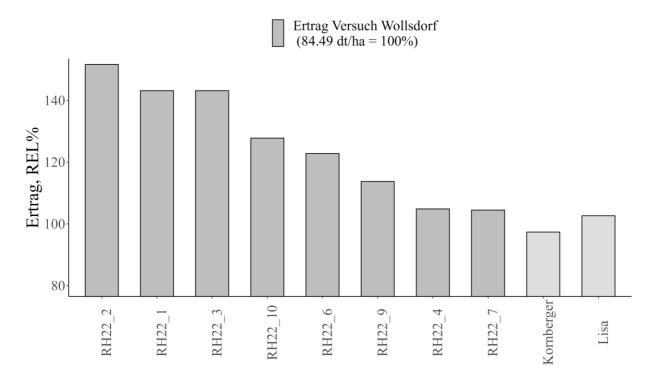


Abbildung 18: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche ohne Trockenstress (grau) der acht im zweiten Projektjahr ertragreichsten Zuchtlinien der Rispenhirse und der Standardsorten Kornberger und Lisa.

Nachdem im ersten Projektjahr ein massiver Befall der Versuche mit Erdraupen bei der Kulturart Rispenhirse keine Bonituren erlaubten, konnten im zweiten Projektjahr 2 Versuche mit insgesamt je 14 Prüfparzellen am Standort Wollsdorf in der Steiermark angelegt werden. Die Rispenhirse bewies in den Versuchen ihre Widerstands- und Kompensationsfähigkeit bei trockenen und heißen Bedingungen. Einige in die Versuche gestellte Zuchtlinien konnten im Vergleich zu den ebenfalls mit angebauten Standardsorten Kornberger und Lisa Spitzenerträge erzielen. Kompakte Wuchstypen zeigten hinsichtlich extremer Wetterereignisse und Trockenstress einen besseren Gesamteindruck als indeterminiert wachsende Formen. Weitere bonitierte Parameter sind in Tabelle 32 abgebildet.

Tabelle 32: Ausgewählte bonitierte Parameter vielversprechender Rispenhirse-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter zur Feststellung ihres Verhaltens in der Umwelt.

Name	Jahr	Standort	Land	Parzellenanzahl	Kornertrag Kornertrag	Tausendkorngewicht	Blühbeginn Tage ab 1. Juli	g Wuchshöhe	Gesamteindruck	-1.no	Reifebonitur	Intensität des Trockenstresses für die Kultur
RH22_1	2022	Wollsdorf	AT	1	120.9	7.4	17	110	5.0	7.0	5.0	3
RH22_2	2022	Wollsdorf	AT	1	128.1	7.2	17	100	2.0	3.0	5.0	3
RH22_3	2022	Wollsdorf	AT	1	120.9	7.4	17	110	3 .0	5 .0	5.0	3
RH22_4	2022	Wollsdorf	AT	1	88.6	6.9	17	110	2.0	4.0	5.0	3
RH22_6	2022	Wollsdorf	AT	1	103.8	7.2	17	125	1.0	2.0	4.0	3
RH22_7	2022	Wollsdorf	AT	1	88.3	7.0	17	120	4.0	6.0	4.0	3
RH22_9	2022	Wollsdorf	AT	1	96.1	7.1	15	130	2.0	4.0	3.0	3
RH22_10	2022	Wollsdorf	AT	1	108.0	7.3	17	120	2.0	2.0	2.0	3

Bitte berücksichtigen, dass bei der Rispenhirse aufgrund des limitierenden Datensatzes nur eine Parzelle pro Zuchtlinie an einem Standort als Datengrundlage dient.

3.1.7 SORGHUM

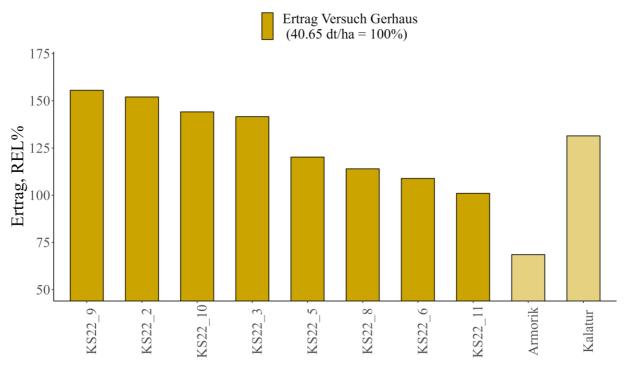


Abbildung 19: Adjustierter, mittlerer relativer Kornertrag in Bezug auf den Versuch unter Trockenstress (gelb) der acht im zweiten Projektjahr ertragreichsten Zuchtlinien des Körnersorghums und der Standardsorten Armorik und Kalatur.

Sorghum benötigt im Anbau weniger Wasser als z.B. Mais und kann auch bei niedrigen Niederschlagssummen gute Erträge liefern. Für ein gutes Wachstum benötigt Sorghum allerdings ausreichend hohe Temperaturen. Die vergangenen heißen Jahre gekoppelt mit der auftretenden Sommertrockenheit haben das Interesse an dieser Spezialkultur in den letzten Jahren geweckt. Auch ist Hirse von Natur aus frei von Gluten, weswegen dieses Lebensmittel für Menschen, die an Zöliakie leiden, von hohem Interesse ist. Dennoch spielt Sorghum bisher im österreichischen Pflanzenbau eine deutlich untergeordnete Reihe. Hier könnten standortangepasste Sorten für eine gesteigerte Akzeptanz dieser Kulturart führen.

Im zurückliegenden Projektjahr wurden drei Versuche bei Sorghum angelegt. In einem Versuch am Standort Gerhaus wurde Körnersorghum untersucht, in zwei weiteren Versuchen an den Standorten Gerhaus und Gleisdorf wurden verschiedene Silosorghum-Zuchtlinien in die Parzellen gestellt. Der Versuchsstandort Gerhaus war dabei von einem hohen Trockenstress geprägt, mit dem die Kulturart dennoch gut zurechtkam. Hier taten sich einige Zuchtlinien und die Standardsorte *Kalatur* mit guten Ertragswerten hervor, wohingegen die ebenfalls mit angebaute Standardsorte *Amorik* deutlich abfiel (Abbildung 18). Bei ausgewählten Zuchtlinien, welche im Feld überzeugen konnten, wurde eine komplette Futterwertanalyse durchgeführt um eine vollständige Übersicht über die Inhaltsstoffe zu generieren (Tabelle 33). Bei den Silosorghum-Zuchtlinien erfolgte im zurückliegenden Projektjahr zunächst nur eine optische Bonitur der Versuchsparzellen

Tabelle 33: Ausgewählte bonitierte Parameter vielversprechender Körnersorghum-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten.

Name	Jahr	Standort	Land	Parzellenanzahl	Buy Kornertrag	% Erntefeuchte	Farbe	Rohprotein XP	Rohfaser XF	N-freie Extraktstoffe XX	Stärke XS	Zucker XZ	Rohfett XL	Rohasche XA	Umsetzbare Energie MJ ME	Intensität des Trockenstresses für die Kultur
KS22_2	2022	Gerhaus	AT	3	61.8	18.5	rot	106	23	818	743	17	39	15	15.7	1
KS22_3	2022	Gerhaus	AT	3	5 7.6	17.8	weiß									1
KS22_5	2022	Gerhaus	AT	3	48.9	17.4	weiß									1
KS22_6	2022	Gerhaus	AT	3	44.3	18.6	weiß									1
KS22_8	2022	Gerhaus	AT	3	46.3	18.6	rot-orange	92	21	833	145	17	42	13	15.72	1
KS22_9	2022	Gerhaus	AT	3	63.2	17.9	rot-orange	103	24	824	746	8	36	12	15.68	1
KS22_10	2022	Gerhaus	AT	3	58.6	17.6	rot									1
KS22_11	2022	Gerhaus	AT	3	41.1	18.6	rot	105	24	818	748	12	38	15	15.7	1

Tabelle 34: Ausgewählte bonitierte Parameter vielversprechender Körnersorghum-Zuchtlinien im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt.

Name	Jahr	Standort	Land	Parzellenanzahl	B Wuchshöhe	Rispenschieben	D Ingendentwicklung	6-1 Lagerung	Reife	Intensität des Trockenstresses für die Kultur
KS22_2	2022	C1	AT	2	4	20	2)	2	
	2022	Gerhaus	ΑI	3	118	2.0	3.7	2.7	3.7	1
KS22_3	2022	Gerhaus	AT	3	1]18 115	5.7	2.7	3.3	5.0	1
				3		5.7	_			
KS22_3	2022	Gerhaus	AT	3	115	5.7	2.7	3.3	5.0	1
KS22_3 KS22_5	2022 2022	Gerhaus Gerhaus	AT AT	3	115 112	5.7 4.3	2.7 3.0	3.3 3.3	5.0 4.3	1 1
KS22_3 KS22_5 KS22_6	2022 2022 2022	Gerhaus Gerhaus Gerhaus	AT AT AT	3 3	115 112 132	5.7 4.3 8.0	2.7 3.0 4.0	3.3 3.3 3.3	5.0 4.3 6.7	1 1 1
KS22_3 KS22_5 KS22_6 KS22_8	2022 2022 2022 2022	Gerhaus Gerhaus Gerhaus	AT AT AT AT	3 3 3	115 112 132 115	5.7 4.3 8.0 5.3	2.7 3.0 4.0 2.7	3.3 3.3 3.3 2.7	5.0 4.3 6.7 4.0	1 1 1

3.1.8 MAIS

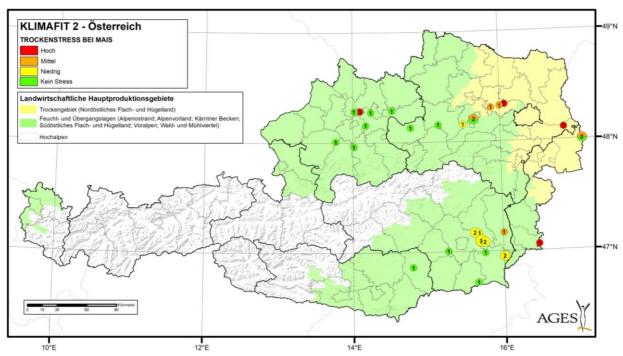


Abbildung 20: Verteilung der einzelnen Versuchsstandorte des zweiten Projektjahres (2022) und der dazugehörigen Trockenstress-Intensität der Standorte an denen Mais angebaut wurde. Eine höhere Auflösung der Karte findet sich im Anhang.

In den zurückliegenden KLIMAFIT Projektjahren war der Mais die Kulturart mit der mit Abstand größten Anzahl an angelegten Versuchen. Dieser Trend setzte sich auch im vergangenen Projektjahr 2022 fort. An 150 Standorten im In- und Ausland wurden insgesamt 825 Versuche angelegt. Innerhalb Österreichs erstreckte sich das Versuchsnetz auf 34 Standorte (Abbildung 20), wobei hier vor allem die östlichen Standorte in Niederösterreich besonders trocken waren. Die restlichen 116 Standorte im Ausland waren dabei weit über Europa verteilt, wobei hier wiederum der Großteil der Versuche in Deutschland, Frankreich, Ungarn und Rumänien angelegt wurden. Der Großteil der Versuche entfiel dabei auf den Körnermais, hier wurden 760 Versuche an 143 Standorten angelegt. Der Silomais wurde lediglich an 7 Standorten in 65 Versuche gestellt. Interessanterweise wurden fast ein Drittel der Versuche (29,8 %) von den betreuenden Züchter:innen als Versuche mit der höchsten Trockenstressintensität (Stufe 1) eingestuft, bei weiteren 146 Versuchen (17,7%) lag eine mittlere Trockenstress-Intensität vor (Stufe 2). Bei weiteren 250 Versuchen (30,3%) wurde der Trockenstress als niedrig (Stufe 3) eigeschätzt. Fast die Hälfte aller angelegten Maisversuche wurden somit als Trockenstress-Versuch eingestuft, wodurch die gezielte Selektion von Zuchtlinien hinsichtlich ihrer Trockenstresstoleranz gut durchführbar war. Die Prüfstandorte in Süd- und Südosteuropa sowie in Ost-Österreich litten dabei im vergangenen Projektjahr besonders unter Trockenstress, während die Standorte in Polen, Deutschland und Oberösterreich besser mit Niederschlägen versorgt waren.

Hinsichtlich der Qualitäten der angebauten Zuchtlinien und ihrem Verhalten in der Umwelt wurden verschiedene Werte erhoben. Neben Reife und Wuchshöhe wurden Parameter wie Jugendentwicklung, Istpflanzenzahl, Kolbenblüte, Bruch, Lagerung, Gesamteindruck und verschiedene Krankheiten wie Blattflecken, Beulenbrand, Toxinbelastung, etc. bonitiert. Darüber hinaus wurde im Anlassfall die Anfälligkeit für Krankheiten wie Stängel- und Kolbenfäule sowie Bruch und Lagerung festgehalten. Unter Einbeziehung von Reife- und Krankheitsbonituren war es somit möglich besonders stresstolerante Hybriden zu selektieren.

Bei der Darstellung der Ergebnisse der Anbauversuche beim Mais unterscheiden wir hinsichtlich Körnermais der Erntegruppe früh/mittelfrüh, Körnermais der Erntegruppe mittelspät/spät und dem Silomais. Die Wahl der richtigen Reifegruppe ist beim Maisanbau sehr entscheidend. In warmen Gebieten erfolgt der Anbau einer

ERGEBNISSE

Sorte mit hoher Reifezahl, da der Mais hier mehr Zeit zum Abreifen hat. In kälteren Lagen sollte demzufolge auf eine niedrigere Reifezahl geachtet werden. Wird eine für den Standort zu hohe Reifezahl gewählt, muss der Mais unter Umständen mit einer zu hohen Kornfeuchtigkeit geerntet und kostenaufwendig getrocknet werden. Wird eine Sorte ausgewählt, welche für den Standort eine zu niedrige Reifezahl aufweist, kann das Ertragsmaximum nicht erreicht werden.

Zur übersichtlichen Darstellung der Ergebnisse wurden die erhobenen Werte der im Projekt KLIMAFIT 2 angebauten Zuchtlinien in einem Sortenkreuz wiedergegeben, wie es auch aus der beschreibenden Sortenliste der AGES GmbH bekannt ist. Dabei wird die Kornfeuchtigkeit zum Erntezeitpunkt in Beziehung zum Kornertrag gesetzt. Je weiter rechts eine Zuchtlinie im Sortenkreuz steht, desto höher ist ihre Reifezahl, je weiter oben sie steht, desto höher der Relativertrag. Beim Silomais wird anstelle der Kornfeuchtigkeit die Trockensubstanz in der Grünmasse angegeben.

Sowohl beim Körnermais, als auch beim Silomais konnten vielversprechende Zuchtlinien in den Feldversuchen beobachtet werden. Diese sind in den nachfolgenden Sortenkreuzen schnell auf einen Blick sichtbar, wenn sie eine überdurchschnittliche Ertragsleistung im Feld erzielten. Es wurden 22 Kandidaten zur amtlichen Wertprüfung angemeldet.

3.1.8.1 <u>Silomais</u>

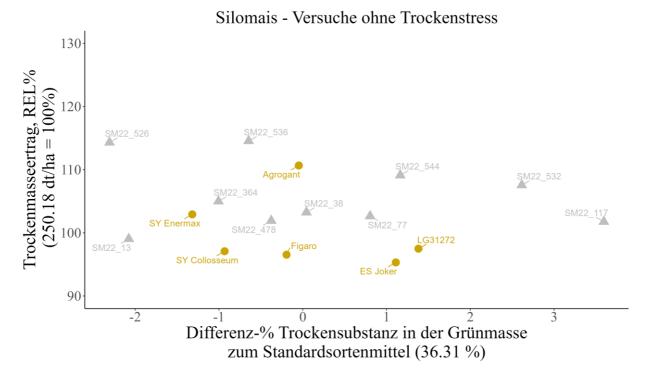


Abbildung 21: Sortenkreuz des Silomais ohne Trockenstressbedingungen. Abgebildet sind die adjustierten Trockenmasseerträge relativ zu dem Standardsortenmittel auf der Y-Achse, und die Differenzen der adjustierten Trockensubstanz in der Grünmasse relativ zu dem Standardsortenmittel auf der X-Achse.

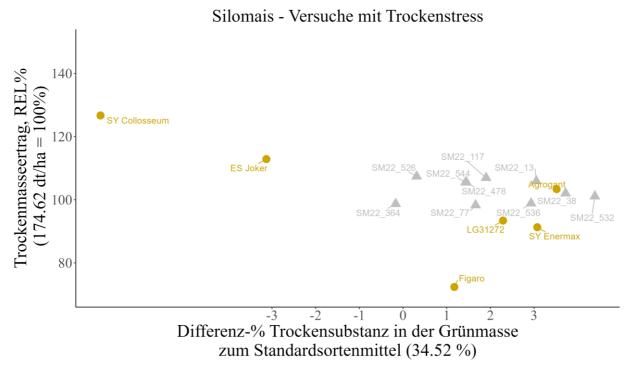


Abbildung 22: Sortenkreuz des Silomais unter Trockenstressbedingungen. Abgebildet sind die adjustierten Trockenmasseerträge relativ zu dem Standardsortenmittel auf der Y-Achse, und die Differenzen der adjustierten Trockensubstanz in der Grünmasse relativ zu dem Standardsortenmittel auf der X-Achse.

Tabelle 35: Ausgewählte bonitierte Parameter vielversprechender Silomais-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten.

Name	Jahr	Reifegruppe	Standort	Land	Parzellenanzahl	Trockenmasseertrag	Trockensubstanz in der Grünmasse (Silomais)	Intensität des Trockenstresses für die Kultur
SM22_13	2022	2	Avenches_Silo	СН	1	229.6	31.1	3
SN122_13	2022		Delley	CH	1	197.3	38.6	2
SM22_38	2022	2	Avenches_Silo	СН	1	240.1	33.2	3
51122_30	2022		Delley	CH	1	190.6	39.2	2
SM22_77	2022	2	Avenches_Silo	СН	1	238.6	34.0	3
514122_77	2022	2	Delley	CH	1	184.0	37.2	2
SM22_117	2022	2	Avenches_Silo	СН	1	236.4	36.8	3
514122_117	2022	2	Delley	CH	1	199.1	37.4	2
SM22_364	2022	2	Avenches_Silo	CH	1	244.5	32.2	3
514122_504	2022	2	Delley	CH	1	184.7	35.3	2
SM22_478	2022	2	Avenches_Silo	СН	1	236 .8	32.8	3
J.1122_470	2022		Delley	CH	1	196.6	37.0	2
SM22_526	2022	2	Avenches_Silo	СН	1	267.8	30.9	3
5.1122_520	2022		Delley	СН	1	199.9	35.8	2
SM22_532	2022	2	Avenches_Silo	СН	1	250.9	35.8	3
J.1122_JJ2	2022		Delley	СН	1	188.9	39.9	2
SM22_536	2022	2	Avenches_Silo	CH	1	268.4	32.6	3
51.122_550		_	Delley	СН	1	185.0	38.4	2
SM22_544	2022	2	Avenches_Silo	СН	1	254.8	34.4	3
511122_544	2022		Delley	CH	1	196.6	36.9	2

Tabelle 36: Ausgewählte bonitierte Parameter vielversprechender Silomais-Zuchtlinien im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt.

ne	1	Reifegruppe	Standort	q	Parzellenanzahl	Blattabreife	Lagerung	Istpflanzenzahl	Gesamteindruck	Intensität des Trockenstresses für die Kultur
Name	Jahr	Reií	Staı	Land	Par	Boı	1.1-9	Parzelle	Bon.1-9	Intensi Kultur
SM22_13	2022	2	Avenches_Silo	CH	1	4	1	71	5.0	3
511122_13	2022		Delley	CH	1	4		74	5.0	2
SM22_38	2022	2	Avenches_Silo	CH	1	3	1	72	3.0	3
514122_50	2022		Delley	CH	1	5		74	3.0	2
SM22_77	2022	2	Avenches_Silo	CH	1	3		74	5.0	3
514122_77	2022		Delley	CH	1	4		74	5.0	2
SM22_117	2022	2	Avenches_Silo	СН	1	4		74	4.0	3
51/122_11/	2022	_	Delley	CH	1	4		74	4.0	2
SM22_364	2022	2	Avenches_Silo	CH	1	3		74	4.0	3
51:122_001			Delley	СН	1	4		74	5.0	2
SM22_478	2022	2	Avenches_Silo	СН	1	4		74	4.0	3
			Delley	СН	1	5		74	5.0	2
SM22_526	2022	2	Avenches_Silo	СН	1	3		74	3.0	3
		_	Delley	СН	1	4		74	3.0	2
SM22_532	2022	2	Avenches_Silo	СН	1	3		74	4.0	3
			Delley	СН	1	4		74	2.0	2
SM22_536	2022	2	Avenches_Silo	CH	1	3		74	4.0	3
			Delley	СН	1	3		74	5.0	2
SM22_544	2022	2	Avenches_Silo	CH	1	4		74	4.0	3
			Delley	CH	1	5		74	4.0	2

3.1.8.2 Reifegruppe früh/mittelfrüh

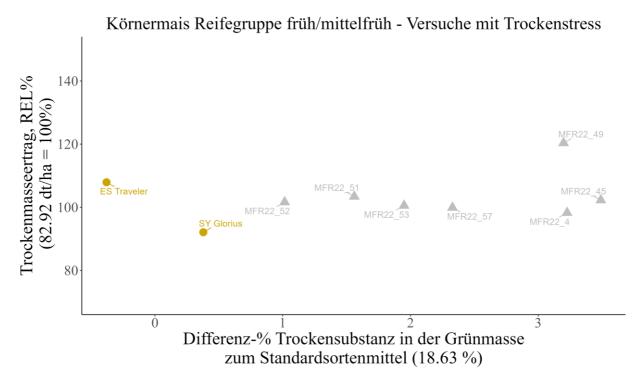


Abbildung 23: Sortenkreuz der Reifegruppe früh/mittelfrüh unter Trockenstress-Bedingungen. Abgebildet sind die adjustierten Kornerträge relativ zu dem Standardsortenmittel auf der Y-Achse, und die Differenzen der adjustierten Kornfeuchtigkeiten relativ zu dem Standardsortenmittel auf der X-Achse.

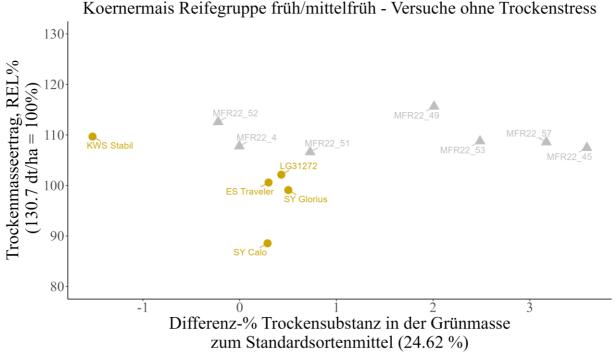


Abbildung 24: Sortenkreuz der Reifegruppe früh/mittelfrüh für Versuche ohne Trockenstress. Abgebildet sind die adjustierten Kornerträge relativ zu dem Standardsortenmittel auf der Y-Achse, und die Differenzen der adjustierten Kornfeuchtigkeiten relativ zu dem Standardsortenmittel auf der X-Achse.

Tabelle 37: Ausgewählte bonitierte Parameter vielversprechender Körnermais-Zuchtlinien der Reifegruppe früh/mittelfrüh im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf den nächsten Seiten.

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	ad/th Maisertrag (14% HzO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				Backi Maglic	SRB	2	90.8	14.4	2
				Bozzai	HU	2	74.3	16.3	3 2
MFR22_4	2022	2		Michelhausen	AT	2	<u>11</u> 5.4	26.5	
WIF 1822_4	2022			Zagreb	HR	2	92.5	15.2	3
				Nyírgyulaj	HU	2			1
				Nitra	SK	2			1
				Arras	FR	2	<u>10</u> 8.0		3
				Greven	DE	2	<u>10</u> 0.7	33.7	3
				Lierde	BE	2	<u>10</u> 9.7	37.2	2
				Malbork	PL	2		38.0	3
				Moorenweis	DE	2	<u>158.0</u>	32.0	3
				Neckarmühlbach	DE	2	87.9	23.2	1
				Posen	PL	2	90.1	34.8	3
				Weihmörting	DE	2	<u>171.7</u>	29.4	3
				Wartberg	AT	2	<u>134</u> .7	32.4	4
				Zeillern	AT	2	190.6	32.3	4
				Allhaming	AT	2	189.8	<u>29</u> .4	4
				Malujovice	PL	1	41.9	26.2	1
				Moorenweis	DE	2	136.7	33.5	3
MFR22_45	2022	2		Neckarmühlbach	DE	2	84.8	24.6	1
				Réclainville	FR	2	142.2	28.6	2
				Weihmörting	DE	2	170.3	29.4	3
				Rustenhart	FR	2	180.7	23.6	4
				Weiz-Mitterdorf	AT	2	153. 0		3
				Wultendorf	AT	2	145.4	31.5	2
				Zeillern	AT	2	185.6	34.2	4
				Bóly	HU	2		16.0	2
				Deu.Jahrndorf	AT	2	104.9		2
				Michelhausen	AT	2	<u>123</u> .2	-0.0	2
				Mureck	AT	2		22.6	4
				Weinberg	AT	2	160.6	_	3
				Taktaharkány	HU	2	42.7	17.9	1
				Nitra	SK	2			1

MFR22_49	Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	pd/maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
MFR22_49						+	2			2
MFR22_49 2022 1 Deu_Jahrndorf RT 2 158. 18.7 2 Lovrin RO 2 143.2 15.2 1 Michelhausen AT 2 147/6 30.4 2 Mureck AT 2 183.9 22.2 4 Vinkovci HR 2 82.2 13.2 2 Weinberg AT 2 168.4 21.8 3 Zagreb HR 2 95.4 18.9 3 Békécsaba HU 2 1 Furculesti RO 2 29.7 15.9 1 Nyirgyulaj HU 2 16.9 15.2 1 Nitra SK 2 1 Nitra SK 2 1 Allhaming AT 2 159.8 29.3 4 Malujovice PL 2 50.1 29.8 1 Moorenweis DE 2 30.5 30.3 3 Neckarmühlbach DE 2 30.1 30.4 1 Réclainville FR 2 141.0 24.8 2 Weihmörting DE 2 181.2 27.8 3 Rustenhart FR 2 173.7 19.7 4 Weiz-Mitterdorf AT 2 156.7 25.2 3 Wultendorf AT 2 179.0 32.3 4 Eferding AT 2 190.4 26.6 1 Ergolding DE 2 37.3 27.5 1 Rustenhart FR 2 175.8 29.3 3 Michelhausen AT 2 109.7 21.4 2 Malujovice PL 2 37.3 27.5 1 Rustenhart FR 2 177.3 27.5 1 Rustenhart FR 2 177.3 27.5 1 Rustenhart FR 2 177.3 27.5 1 Rustenhart FR 2 37.3 37.5 1									_	
MFR22_49										
MFR22_49										
Mureck						+				
Vinkovci										
Weinberg	MFR22_49	2022	1						_	
Zagreb										3
Békécsaba						+				3
Nyírgyulaj HU 2 16.9 15.2 1 Nitra SK 2										
Nitra SK 2						RO	2	29.7	15.9	1
Allhaming					Nyírgyulaj	HU	2	16.9	15.2	1
Malujovice					Nitra	SK	2			1
Moorenweis DE 2 139 5 30 3 3 Neckarmühlbach DE 2 10 1 20 4 1 Réclainville FR 2 141 0 24 8 2 Weihmörting DE 2 181 2 27 8 3 Rustenhart FR 2 173 7 19 7 4 Weiz-Mitterdorf AT 2 156 7 23 2 3 Wultendorf AT 2 133 9 29 3 2 Zeillern AT 2 179 0 32 8 4 Eferding AT 2 190 4 26 6 1 Gleisdorf Hütter AT 2 165 6 23 1 3 Ergolding DE 2 175 8 29 3 3 Michelhausen AT 2 10 7 21 4 2 Malujovice PL 2 67 7 3 27 5 1 Rustenhart FR 2 177 3 19 1 4 Wultendorf AT 2 136 8 28 2 2 Backi Maglic SRB 2 88 7 14 3 2 Bozzai HU 2 76 8 14 8 3					Allhaming	AT	2			4
Neckarmühlbach DE 2 70.1 20.4 1 Réclainville FR 2 141 0 24.8 2 Weihmörting DE 2 181.2 27.8 3 Rustenhart FR 2 173.7 9.7 4 Weiz-Mitterdorf AT 2 156.7 23.2 3 Wultendorf AT 2 133.9 29.3 2 Zeillern AT 2 179.0 32.8 4 Eferding AT 2 190.4 26.6 1 Eferding DE 2 175.8 29.3 3 Michelhausen AT 2 109.7 21.4 2 Malujovice PL 2 67.3 27.5 1 Rustenhart FR 2 177.3 19.1 4 Wultendorf AT 2 136.8 28.2 2 Backi Maglic SRB 2 88.7 14.3 2 Bozzai HU 2 76.8 14.8 3										
Réclainville						_				
Weihmörting DE 2 181.2 27.8 3 Rustenhart FR 2 173.7 19.7 4 Weiz-Mitterdorf AT 2 156.7 23.2 3 Wultendorf AT 2 133.9 29.3 2 Zeillern AT 2 179.0 32.8 4 Eferding AT 2 190.4 26.6 1 MFR22_51 2022 2 Gleisdorf Hütter AT 2 165.6 23.1 3 Ergolding DE 2 175.8 29.3 3 Michelhausen AT 2 109.7 21.4 2 Malujovice PL 2 67.3 27.5 1 Rustenhart FR 2 177.3 19.1 4 Wultendorf AT 2 136.8 28.2 2 Backi Maglic SRB 2 88.7 14.3 2 Bozzai HU 2 76.8 14.8 3						-				
Rustenhart FR 2 173.7 19.7 4 Weiz-Mitterdorf AT 2 156.7 23.2 3 Wultendorf AT 2 133.9 29.3 2 Zeillern AT 2 179.0 32.8 4 Eferding AT 2 190.4 26.6 1 Gleisdorf Hütter AT 2 165.6 23.1 3 Ergolding DE 2 175.8 29.3 3 Michelhausen AT 2 109.7 21.4 2 Malujovice PL 2 67.3 27.5 1 Rustenhart FR 2 177.3 19.1 4 Wultendorf AT 2 136.8 28.2 2 Backi Maglic SRB 2 88.7 14.3 2 Bozzai HU 2 76.8 14.8 3						_			_	
Weiz-Mitterdorf AT 2 156.7 23.2 3										
Myltendorf AT 2 133,9 29,3 2 Zeillern AT 2 179,0 32,8 4 Eferding AT 2 190,4 26,6 1 Gleisdorf Hütter AT 2 165,6 23,1 3 Ergolding DE 2 175,8 29,3 3 Michelhausen AT 2 109,7 21,4 2 Malujovice PL 2 67,3 27,5 1 Rustenhart FR 2 177,3 19,1 4 Wultendorf AT 2 136,8 28,2 2 Backi Maglic SRB 2 8,7 14,3 2 Bozzai HU 2 76,8 14,8 3								1,01,		
MFR22_51 2022 2 Eferding AT 2 179.0 32.\$ 4									29.2	
MFR22_51 2022 2 Eferding AT 2 190.4 26.6 1 Gleisdorf Hütter AT 2 165.6 23.1 3 Ergolding DE 2 175.8 29.3 3 Michelhausen AT 2 109.7 21.4 2 Malujovice PL 2 67.3 27.5 1 Rustenhart FR 2 177.3 19.1 4 Wultendorf AT 2 136.8 28.2 2 Backi Maglic SRB 2 88.7 14.3 2 Bozzai HU 2 76.8 14.8 3										
MFR22_51 2022 2 Gleisdorf Hütter AT 2 165.6 23.1 3 Ergolding DE 2 175.8 29.3 3 Michelhausen AT 2 109.7 21.4 2 Malujovice PL 2 67.3 27.5 1 Rustenhart FR 2 177.3 19.1 4 Wultendorf AT 2 136.8 28.2 2 Backi Maglic SRB 2 88.7 14.3 2 Bozzai HU 2 76.8 14.8 3									_	
Ergolding DE 2 175.8 29.3 3 Michelhausen AT 2 109.7 21.4 2 Malujovice PL 2 67.3 27.5 1 Rustenhart FR 2 177.3 19.1 4 Wultendorf AT 2 136.8 28.2 2 Backi Maglic SRB 2 88.7 14.3 2 Bozzai HU 2 76.8 14.8 3	MFR22_51	2022	2							
Malujovice PL 2 67.3 27.5 1 Rustenhart FR 2 177.3] 9.1 4 Wultendorf AT 2 136/8 28/2 2 Backi Maglic SRB 2 88.7 14.3 2 Bozzai HU 2 76.8 14.8 3						DE	2			3
Rustenhart FR 2 177.3 19.1 4 Wultendorf AT 2 136.8 28.2 2 Backi Maglic SRB 2 88.7 14.3 2 Bozzai HU 2 76.8 14.8 3					Michelhausen	AT	2	109.7	21.4	2
Wultendorf AT 2 136/8 28/2 2 Backi Maglic SRB 2 88.7 14.3 2 Bozzai HU 2 76.8 14.8 3					· ·				_	
Backi Maglic SRB 2 88.7 14.3 2 Bozzai HU 2 76.8 14.8 3						_				
Bozzai HU 2 76.8 14.8 3						_				
Michelhausen AT 2 120.4 20.7 2						_				2
Michelhausen AT 2 120.4 20.7 2 Zagreb HR 2 77.4 15.1 3									_	
Nyírgyulaj HU 2 15.6 15.6 1						+		_		
Nitra SK 2 1								15.0	u 1 J . U	

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	p Maisertrag (14% IEO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				Eferding	AT	2	167.8	23.6	1
				Gleisdorf Hütter	AT	2	171.1	20.6	3
				Ergolding	DE	2	189.2	28.7	3
				Michelhausen	AT	2	132.0	23.3	2
				Malujovice	PL	2	31.8	26.4	1
				Rustenhart	FR	2	184.1	19.4	4
MFR22_52	2022	2		Wultendorf	AT	2	<u>135</u> .1	25 .9	2
				Backi Maglic	SRB	2		14.7	2
				Bozzai	HU	2		16.1	3
				Michelhausen	AT	2	134.3	22.7	2
				Zagreb	HR	2	83.8	15.7	3
				Nyírgyulaj	HU	2	18.3	15.2	1
				Nitra	SK	2			1
				Allhaming	AT	2	170.8	30.9	4
				Malujovice	PL	2	30.3	29.3	1
				Moorenweis	DE	2	161.4	28.8	3
				Neckarmühlbach	DE	2	84.7	21.4	1
MED22 52	2022	2		Réclainville	FR	2	141.4	25 .1	2
MFR22_53	2022			Weihmörting	DE	2	177.8	28.8	3
				Rustenhart	FR	2	177.4	21.3	4
				Weiz-Mitterdorf	AT	2	157.9	24.2	3
				Wultendorf	AT	2	142.1	28.8	2
				Zeillern	AT	2	166.8	35.7	4
				Allhaming	AT	2		31.4	4
				Malujovice	PL	2	33.9	31.6	1
				Moorenweis	DE	2	153.1	30.3	3
				Neckarmühlbach	DE	2	75.4	20.4	1
MFR22_57	2022	2		Réclainville	FR	2	138.7	25.0	2
WIF K22_5/	2022			Weihmörting	DE	2	172.3	29. 6	3
				Rustenhart	FR	2	176.0	21.6	4
				Weiz-Mitterdorf	AT	2	160.6	25.0	3
				Wultendorf	AT	2	148.3	29.1	2
				Zeillern	AT	2	176.5	36.0	4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				St. Pölten	AT	1	122.6	22.6	4
				Attnang-Puchheim	AT	1	126 .9	29.9	4
				Linz	AT	1	144.0	27.2	4
				Wieselburg	AT	1	140.2	18.7	4
				Ille-et-Vilaine1	FR	1	83.5	17.3	3
				Finistère	FR	1	70.3	28.5	2
				Ille-et-Vilaine2	FR	1	84.2	20.4	2
				Morbihan	FR	1	64.2	29. 6	2
				Sarthe2	FR	1		15.3	3
				Ille-et-Vilaine3	FR	1	73.1	21.8	3
				Maine-et-Loire2	FR	1	113.8	22.0	4
1 mp 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2022		••	Maine-et-Loire1	FR	1	120.0	18.8	4
MFR22_1001	2022	1	X	Loir-et-Cher	FR	1	71.3	17.7	4
				EMSLAND	DE	1	106.4	31.2	4
				Weser-Ems	DE	1	\$9.7	23.2	2
				Munster2	DE	1	105.8	28.3 21.8	3 2
				Munster3	DE	1	6 2.7 6 2.9	28.3	3
				Munster1	DE	1			
				WARENDORF	DE DE	1 1	69.1 7 6.0	24.4 27.0	2
				SOEST FREISING	DE	1	124.1	26.7	4
				WÜRZBURG	DE	1	86.7	20.7 22.7	2
				ERDING1	DE	1	167.1	30.6	4
				NEU-ULM	DE	1	90.0	31.4	2
				ERDING2	DE	2	149.1	32.7	4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	maisertrag (14% IEO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				St. Pölten	AT	1	125.7	23.0	4
				Attnang-Puchheim	AT	1	141.0	29 .1	4
				Linz	AT	1	147. 4	26.6	4
				Wieselburg	AT	1	142.7	20.8	4
				Ille-et-Vilaine1	FR	1	80.3	17.4	3
				Finistère	FR	1	69.1	25.5	2
				Ille-et-Vilaine2	FR	1	<u>10</u> 0.0	20.3	2
				Morbihan	FR	1	62.8	24.1	2
				Sarthe2	FR	1	10 _{0.7}	16.0	3
				Ille-et-Vilaine3	FR	1	76.5	20.8	3
				Maine-et-Loire2	FR	1	90.2	18.4	4
3 FF 20 4000	2022		••	Maine-et-Loire1	FR	1	125.6	18.3	4
MFR22_1002	2022	1	X	Loir-et-Cher	FR	1	90.7	17.8	4
				EMSLAND	DE	1	119.5	30.2	4
				Weser-Ems	DE	1	75.8	24.2	2
				Munster2	DE	1	110.4	25 .3	3 2
				Munster3	DE	1	7 7.5	27.4	3
				Munster1	DE	1	97.3	22.4	
				WARENDORF	DE	1	6 7.6		2
				SOEST FREISING	DE DE	1	99.3	22.6 24.7	4
				WÜRZBURG	DE	1	84.2	20.5	2
				ERDING1	DE	1	167.4	30.1	4
				NEU-ULM	DE	1	66.1	32.4	2
				ERDING2	DE	2	153.5	31.5	4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	bal/maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				St. Pölten	AT	1	128.3	23.5	4
				Attnang-Puchheim	AT	1	149.2	3 0.0	4
				Linz	AT	1	152.0	27.2	4
				Wieselburg	AT	1		17.8	4
				Ille-et-Vilaine1	FR	1	7 4.1	16.8	3
				Finistère	FR	1	5 9.6	27 .6	2
				Ille-et-Vilaine2	FR	1	81.7	20.2	2
				Morbihan	FR	1	69.0	23.1	2
				Sarthe2	FR	1		16.1	3
				Ille-et-Vilaine3	FR	1	81.5	22.1	3
				Maine-et-Loire2	FR	1	8 7.1	19.4	4
				Maine-et-Loire1	FR	1	<u>126</u> .6	19.6	4
MFR22_1003	2022	1	X	Loir-et-Cher	FR	1	<u>7</u> 9.2	17.7	4
				EMSLAND	DE	1	122.8	31.4	4
				Weser-Ems	DE	1	83.2	26 .0	2
				Munster2	DE	1	111.9	31.7	3
				Munster3	DE	1	69.1	21.1	2
				Munster1	DE	1	6 2.4	28.4	3
				WARENDORF	DE	1	66.8	23.9	2
				SOEST	DE	1	6 7.6	26 .8	1
				FREISING 	DE	1	118.0	30.4	4
				WÜRZBURG	DE	1	83.6	22.7	2
				ERDING1	DE	1	174.5	32.1	4
				NEU-ULM	DE	1	72.2	34.9	2
				ERDING2	DE	2	138.1	32.7	4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	pd/maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				Wolfsberg	AT	1	131.9	25.6	4
				St. Pölten	AT	1	114.3	23.0	4
				Attnang-Puchheim	AT	1	153. 8	31.2	4
				Schwertberg	AT	1	127.9	24.1	4
				Linz	AT	1	146.9	27.8	4
				Loire-Atlantique1	FR	2	64.2	17.0	2
				Sarthe1	FR	2	152.9	18.3	3
				Sarthe2	FR	1	<u>10</u> 4.6		3
				Ille-et-Vilaine4	FR	2	89.7	25 .3	3
MFR22_1004	2022	2	X	Maine-et-Loire1	FR	1	141.2	21.4	4
				Loir-et-Cher	FR	1	95.0	19.2	4
				Loire-Atlantique2	FR	1	37.2	19.4	2
				Munster1	DE	1	68.8	31.6	3
				WARENDORF	DE	1	65.2	22.7	2
				DINGOLFING-LANDAU	DE	2	<u>157.</u> 9	27.7	4
				FREISING	DE	1	<u>9</u> 9.8	28.2	4
				WÜRZBURG	DE	1	87.3	22.8	2
				ERDING1	DE	1	<u>157.</u> 1	32.1	4
				Cher	FR	1	<u>7</u> 8.7	15.2	2
				Wolfsberg	AT	1	119.8	26.1	4
				St. Pölten	AT	2	126.3	26.1	4
				Attnang-Puchheim	AT	1	131.4		4
				Schwertberg	AT	1	131.1		4
				Linz	AT	1		30.7	4
				Wieselburg	AT	2		22.0	4
				Ille-et-Vilaine1	FR	1	6 3.9		3
				Loire-Atlantique1 Sarthe1	FR FR	2 2		18.1 18.7	3
				Sarthe2	FR	1	_	17.4	3
				Ille-et-Vilaine4	FR	2	84.3		3
MFR22_1005	2022	2	X	Maine-et-Loire2	FR	1	103.7		4
1.11 1.22_1005	2022	_	11	Maine-et-Loire1	FR	1	J.7		4
				Loir-et-Cher	FR	1	93.7	19.4	4
				Loire-Atlantique2	FR	1	40.4	22.4	2
				Munster2	DE	2	76.8	28.2	3
				Munster1	DE	1		34.0	3
				WARENDORF	DE	1	80.6	26.6	2
				DINGOLFING-LANDAU	DE	2		28.7	4
				FREISING	DE	1	132.0	_	4
				WÜRZBURG	DE	1		24.0	2
				ERDING1	DE	1	170.3	33.8	4
				Cher	FR	1	7 7.9	16.7	2

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	By Maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				St. Pölten	AT	1	122.2	22.5	4
				Wolfsberg	AT	1	120.9		4
				St. Pölten	AT	1	<u>127</u> .6	23.1	4
				Attnang-Puchheim	AT	1	<u>143.</u> 5	30.2	4
				Schwertberg	AT	2	119.6	22.4	4
				Linz	AT	1	143.5	26.9	4
				Wieselburg	AT	1	<u>128</u> .4	19.8	4
				Ille-et-Vilaine1	FR	2	81.4	19.3	3
				Loire-Atlantique1	FR	2		17.6	2
				Sarthe1	FR	2	140.3	17.4	3
				Sarthe2	FR	1		17.1	3
MFR22_1006	2022	2	X	Ille-et-Vilaine4	FR	2	84.0	25 .1	3
1122 2122 21000		_		Maine-et-Loire2	FR	1	91.8	20.5	4
				Maine-et-Loire1	FR	1	140.7	20.2	4
				Loir-et-Cher	FR	1	92.1	19.6	4
				Loire-Atlantique2	FR	1	36.9	20.0	3
				Munster2	DE	1		22.5	
				Munster1	DE	1	7 5.7	32.7	3
				WARENDORF	DE	1	71.5	20.9	2
				DINGOLFING-LANDAU	DE	2	152.6	25.3	4
				FREISING WÜRZBURG	DE	1	05.2	26.2	
				ERDING1	DE DE	1	95.3 161.2	26.3 31.2	4
				Cher	FR	1	93.1	14.7	2
				Cher	ГK	1	90.1	14./	2

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				Wolfsberg	AT	1	126.4		4
				St. Pölten	AT	1	129 .3		4
				Attnang-Puchheim	AT	1	148.7	33.5	4
				Schwertberg	AT	1	138 .8	26.6	4
				Linz	AT	1	154. 6	31.3	4
				Wieselburg	AT	3	132.4	23.1	4
				Ille-et-Vilaine1	FR	1		18.1	3
				Loire-Atlantique1	FR	2	73.9	19.3	2
				Sarthe1	FR	2	153 .1	18.7	3
				Sarthe2	FR	1	<u>10</u> 9.6	18.3	3
				Ille-et-Vilaine4	FR	2	96.9	25 .3	3
MFR22_1007	2022	2	X	Maine-et-Loire2	FR	1	<u>10</u> 4.9	22.4	4
				Maine-et-Loire1	FR	1			4
				Loir-et-Cher	FR	1	118 .7	22.5	4
				Loire-Atlantique2	FR	1	27.5	20.2	2
				Munster2	DE	1	85.7	27.7	3
				Munster1	DE	1	92.8	31.9	3
				WARENDORF	DE	1	7 8.9	25 .3	2
				DINGOLFING-LANDAU	DE	2	180.8	28.1	4
				FREISING	DE	1	118 .9	28.2	4
				WÜRZBURG	DE	1	94.9	24.2	2
				ERDING1	DE	1	<u>171.7</u>	33.9	4
				Cher	FR	1	84.7	15.5	2

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Baisertrag (14% IEO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				Wolfsberg	AT	1	123.9	23.4	4
				St. Pölten	AT	1	120.9	22.1	4
				Attnang-Puchheim	AT	1	142.3	29.7	4
				Schwertberg	AT	2	<u>119</u> .5	22.8	4
				Linz	AT	1	144.4	27.8	4
				Wieselburg	AT	1	<u>117</u> .3	19.1	4
				Ille-et-Vilaine1	FR	1	90.4	18.0	3
				Loire-Atlantique1	FR	2	68.3	17.7	2
				Sarthe1	FR	2	152. 0	16.5	3
				Sarthe2	FR	1		16.0	3
				Ille-et-Vilaine4	FR	2	<u>10</u> 3.1	24.4	3
MFR22_1008	2022	2	X	Maine-et-Loire2	FR	1	95.8	21.5	4
		_		Maine-et-Loire1	FR	1	135.2	20.0	4
				Loir-et-Cher	FR	1	110.5	20.8	4
				Loire-Atlantique2	FR	1	34.2	18.5	2
				Munster2	DE	1			3
				Munster1	DE	1	94.5	32.3	3
				WARENDORF	DE	1	74.2	22.5	2
				DINGOLFING-LANDAU	DE	2	150.3	25.0	4
				FREISING	DE	1	116.3	27.1	4
				WÜRZBURG	DE	1	87.7	23.0	2
				ERDING1	DE	1	160.7	31.2	4
				Cher	FR	1	89.1		2
				St. Pölten	AT	1	118.0	_	4
				Brno	CZ	2	111.4	15.2 21.3	2
				Eferding Oberhummel	AT DE	2	141.3	_	3
MFR22_1009	2022	2	X	Pawlowice	PL	2	129.5	13.3	4
1VIII K22_1009	2022		Λ	Skoloszow	PL	2		15.8	4
				St.Pölten	AT	2	129.6		3
				Tulln2	AT	2		15.0	1

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Maisertrag (14% IEO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				Brno	CZ	2	114.9	28.0	2
				Eferding	AT	2	152.0	22.5	4
				Oberhummel	DE	2	139.2	16.3	3
MFR22_1010	2022	2	X	Oberhummel Pawlowice	DE PL	2	139 2 138 1	16.3 18.5	3 4
MFR22_1010	2022	2	X		_				
MFR22_1010	2022	2	X	Pawlowice	PL	2	138.1	18.5	4

Tabelle 38: Ausgewählte bonitierte Parameter vielversprechender Körnermais-Zuchtlinien der Reifegruppe früh/mittelfrüh im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf den nächsten Seiten.

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife Bon.1-9	wachshöhe	Jugendentwicklung Bon.1-9	WMLL Wolbenblüte	Gebrochene Pflanzen	arzelle [stpflanzenzah]	Stängel- und Kolbenfäule	Blattflecken	6-I'i	Gesamteindruck	g Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
				Backi Maglic	SRB	2					2					3.5		2
			li	Bozzai	HU	2	8.5									4.0		3
MED22 4	2022	١	l	Michelhausen	AT	2	9.0	235	6.5	9. Jul.	7							2
MFR22_4	2022	2		Zagreb	HR	2	8.0	266			3					5.1		3
				Nyírgyulaj	HU	2										8.5		1
				Nitra	SK	2												1
				Arras	FR	2					2	68						3
				Greven	DE	2			3.5			77						3
			[Lierde	BE	2			4.0		1							2
				Malbork	PL	2						71						3
				Moorenweis	DE	2						82						3
				Neckarmühlbach	DE	2			3.5			81						1
				Posen	PL	2						69						3
				Weihmörting	DE	2						74						3
				Wartberg	AT	2	5.0		4.0							3.5		4
				Zeillern	AT	2		315	4.0	11. Jul.	1		5.0	3.0		2.0		4
				Allhaming	AT	2	5.0		4.0							2.0		4
				Malujovice	PL	1												1
1 MED 22 45	2022	_		Moorenweis	DE	2			10									3
MFR22_45	2022	2		Neckarmühlbach	DE	2			4.0									2
				Réclainville	FR DE	2												3
				Weihmörting Rustenhart	FR	2		228										4
				Weiz-Mitterdorf	AT	2	5.5	315	4.0	12. Jul.	3			3.0				3
				Wultendorf	AT	2	3.3	275	3.0	12. Jul.	4		4.0	p. 0		3.0		2
				Zeillern	AT	2		310	4.0	11. Jul.	2		4.0	2.0		3.0		4
				Bóly	HU	2	8.5	310	4.0	11. Jul.			4.0	2.0		5.0		2
			ŀ	Deu.Jahrndorf	AT	2	9.0	250								4.0		2
				Michelhausen	AT	2	7.5	235	3.0		1		4.0			4.0		2
				Mureck	AT	2	7.5	336	3.0	2. Jul.								4
				Weinberg	AT	2	6.0	303	2.0		1			4.5				3
				Taktaharkány	HU	2	7.5									5.5		1
				Nitra	SK	2												1
				Backi Maglic	SRB	2	8.0				4					5.0		2
				Bóly	HU	2	8.0									5.0		2
				Bozzai	HU	2	5.5									4.0		3
				Deu.Jahrndorf	AT	2	7.5	245			1		4.0			5.0		2
				Lovrin	RO	2	9.0				19					6.5		1
				Michelhausen	AT	2	5.0	240	5.0	8. Jul.		73						2
MFR22_49	2022	1	[Mureck	AT	2		335	4.0	5. Jul.			6.0			4.0		4
17II K22_49	2022	1		Vinkovci	HR	2	8.5					62				3.5		2
				Weinberg	AT	2	5.5	333	3.0	5. Jul.		56	4.0	3.5		4.0		3
				Zagreb	HR	2	7.0	266			2	73				3.6		3
				Békécsaba	HU	2								<u> </u>		7.5		1
				Furculesti	RO	2												1
				Nyírgyulaj	HU	2										7.5		1
				Nitra	SK	2												1

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife Bon.1-9	m Wuchshöhe	Jugendentwicklung Bon.1-9	MMTT Kolbenblüte	Zahl Gebrochene Pflanzen	arzenzahl	Stängel- und Kolbenfäule	Blattflecken	6-1-1-1	Gesamteindruck	B Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
				Allhaming	AT	2	5.0		5.5							2.0		4
				Malujovice	PL	2												1
				Moorenweis	DE	2												3
				Neckarmühlbach	DE	2			5.5									1
				Réclainville	FR	2												2
				Weihmörting	DE	2												3
				Rustenhart	FR	2		243										4
				Weiz-Mitterdorf	AT	2	6.0	305	5.0	17. Jul.	4			5.0				3
				Wultendorf	AT	2		270	6.0	15. Jul.	6		6.0			5.0		2
				Zeillern	AT	2		320	6.5	14. Jul.	2		6.0	1.5		5.0		4
				Eferding	AT	2	8.0						3.3	7.0		5.0		1
MFR22_51	2022	2		Gleisdorf Hütter	AT	2		328		11. Jul.	8							3
				Ergolding	DE	2			4.0									3
				Michelhausen	AT	2	9.0	225	5.0	10. Jul.	6							2
				Malujovice	PL	2												1
				Rustenhart	FR	2		230			_							4
				Wultendorf	AT	2		275	6.0	16. Jul.	8		5.0			3.0		2
				Backi Maglic	SRB	2					3					5.0		2
				Bozzai	HU	2	7.5	005	O	10 7 1	1 0					3.5		3
				Michelhausen	AT	2	9.0	235 264	5.0	10. Jul.	3							2
				Zagreb	HR	2	9.0	264			1					5.1		3
				Nyírgyulaj	HU	2										7.5		1
				Nitra	SK AT	2	9.0						3.3	6.0		4.0		1
				Eferding Gleisdorf Hütter	AT	2	9.0	343		7. Jul.	6		3.3	6.0		4.0		3
				Ergolding	DE	2		343	2.0	/. Jui.	0							3
				Michelhausen	AT	2	7.0	245	4.5	8. Jul.	2							2
				Malujovice	PL	2	7.0	Z#3	4.0	0. Jul.								1
				Rustenhart	FR	2		257										4
MFR22_52	2022	2	l i	Wultendorf	AT	2		290	5.5	14. Jul.	14		3.0			3.0		2
1411 1422_02	2022	~		Backi Maglic	SRB	2		220	3.3	14.501.	3		JU			3.0		2
				Bozzai	HU	2	7.0									5.0		3
				Michelhausen	AT	2	6.0	250	4.0	7. Jul.	2							2
			li	Zagreb	HR	2	6.5	285			1					4.1		3
				Nyírgyulaj	HU	2										7.0		1
		L	L I	Nitra	SK	2												1
				Allhaming	AT	2	5.5		6.0							1.0		4
				Malujovice	PL	2												1
				Moorenweis	DE	2												3
			[Neckarmühlbach	DE	2			5.0									1
MFR22_53	2022	2		Réclainville	FR	2												2
WIF K22_33	2022	-		Weihmörting	DE	2												3
				Rustenhart	FR	2		237										4
				Weiz-Mitterdorf	AT	2	6.5	340	4.0	18. Jul.	1			4.0				3
				Wultendorf	AT	2		280	6.5	17. Jul.	5		6.0	<u> </u>		4.0		2
		L	\sqcup	Zeillern	AT	2		325	6.0	15. Jul.	4		4.0	2.5		4.0		4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife	Wuchshöhe	Jugendentwicklung	Kolbenblüte	Gebrochene Pflanzen	Istpflanzenzahl	Stängel- und Kolbenfäule	Blattflecken	Helminthosporium	Gesamteindruck	Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
	ſ	~	>	Allhaming	AT	2	Bon.1-9 5.5	cm	Bon.1-9 5.5	TTMM	Zani/P	arzelle		Bon	1.1-9	1.5	cm	4 4
				Malujovice	PL	2	3.3		3.3							1.5		1
				Moorenweis	DE	2												3
				Neckarmühlbach	DE	2			5.0									1
MFR22_57	2022	2		Réclainville Waihmärting	FR	2												3
				Weihmörting Rustenhart	DE FR	2		247										4
				Weiz-Mitterdorf	AT	2	6.0	320	4.5	16. Jul.	1			3.0				3
				Wultendorf	AT	2		280	5.5	16. Jul.	2		5.0			3.0		2
				Zeillern	AT	2		335	6.5	14. Jul.	1		6.0	1.5		4.0		4
				St. Pölten	AT	1		214 271				210	-			-	145	4
				Attnang-Puchheim Linz	AT AT	1		245				233					136	4
				Wieselburg	AT	1		253				214					136	4
				Ille-et-Vilaine1	FR	1		211				340						3
				Finistère	FR	1		209				349						2
				Ille-et-Vilaine2	FR	1		250				358					146	2
				Morbihan Sarthe2	FR FR	1		202				346 356					119	3
				Ille-et-Vilaine3	FR	1		430				365					117	3
				Maine-et-Loire2	FR	1						216						4
				Maine-et-Loire1	FR	1		211				237						4
MFR22_1001	2022	1	X	Loir-et-Cher	FR	1						265						4
				EMSLAND	DE	1		222				312						4
				Weser-Ems Munster2	DE DE	1		222 177				312						3
				Munster3	DE	1		1//				340						2
				Munster1	DE	1						310					107	3
				WARENDORF	DE	1		220				301						2
				SOEST	DE	1		202				224						1
				FREISING	DE	1		252				337						4
				WÜRZBURG ERDING1	DE DE	1		174 273				357						4
				NEU-ULM	DE	1		217				333					129	2
				ERDING2	DE	2		268				341						4
				St. Pölten	AT	1		236				219						4
				Attnang-Puchheim	AT	1		295				00-	-				151	4
				Linz	AT AT	1		256 270				237 215					134 141	4
				Wieselburg Ille-et-Vilaine1	FR	1		217				340					141	3
				Finistère	FR	1		234				361						2
				Ille-et-Vilaine2	FR	1		266				363					149	2
				Morbihan	FR	1		221				347						2
				Sarthe2	FR	1		242				364		-		-	115	3
				Ille-et-Vilaine3 Maine-et-Loire2	FR FR	1						359 223						3
				Maine-et-Loire2 Maine-et-Loire1	FR	1		229				253 253						4
MFR22_1002	2022	1	X	Loir-et-Cher	FR	1						272				L		4
				EMSLAND	DE	1		261				312						4
				Weser-Ems	DE	1		232				315						2
				Munster2	DE	1		185				343						3
				Munster3 Munster1	DE DE	1						331					108	3
				WARENDORF	DE	1		248				309					100	2
				SOEST	DE	1		213				269						1
				FREISING	DE	1		238				331						4
				WÜRZBURG	DE	1		190				362						2
				ERDING1	DE	1		294				343					1 4 4	4
				NEU-ULM ERDING2	DE	2		230 278				331					144	4
				EKDING2	DE		1	Z/8			l	351			<u> </u>			4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife	Wuchshöhe	Pogendentwicklung	M Kolbenblüte	Zebrochene Pflanzen	Istpflanzenzahl	Stängel- und Kolbenfäule	Blattflecken	Helminthosporium	Gesamteindruck	Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
	r	4	· ·	St. Pölten	AT	1	DOII.1-9	230	DOII.1-9	I I IVIIVI	Zam/P	191		DOII	.1-9		CIII	4
				Attnang-Puchheim	AT	1		286				191					142	4
				Linz	AT	1		261				226					136	4
				Wieselburg	AT	1		245				201					130	4
				Ille-et-Vilaine1	FR	1		227				340					150	3
				Finistère	FR	1		224				354						2
MFR22_1003				Ille-et-Vilaine2	FR	1		267				344					158	2
	2022	1		Morbihan	FR	1		237				348					130	2
				Sarthe2	FR	1		243				349					109	3
				Ille-et-Vilaine3	FR	1		243				361					109	3
				Maine-et-Loire2	FR	1						178						4
				Maine-et-Loire1	FR	1		221				25 ₂						4
			X	Loir-et-Cher	FR	1		421				261						4
				EMSLAND	DE	1		245				299						4
				Weser-Ems	DE	1		234				308						2
				Munster2	DE	1		190				295						3
				Munster3	DE	1		190				322						2
				Munster1	DE	1						297					103	3
				WARENDORF	DE	1		210				299					103	2
				SOEST	DE	1		204				277						1
				FREISING	DE	1		237				324						4
				WÜRZBURG	DE	1		181				338						2
				ERDING1	DE	1		291				331						4
				NEU-ULM	DE	1		210				322					115	2
				ERDING2	DE	2		280				333					113	4
				Wolfsberg	AT	1		242				243						4
				St. Pölten	AT	1		214				220						4
				Attnang-Puchheim	AT	1		279				240					152	4
				Schwertberg	AT	1		252				190					102	4
				Linz	AT	1		254				234					139	4
				Loire-Atlantique1	FR	2		231				352						2
				Sarthe1	FR	2						357						3
				Sarthe2	FR	1		238				368					118	3
			X	Ille-et-Vilaine4	FR	2						365					110	3
MFR22 1004	2022	2		Maine-et-Loire1	FR	1		221				252						4
		-		Loir-et-Cher	FR	1						272						4
				Loire-Atlantique2	FR	1						250						2
				Munster1	DE	1						309					124	3
				WARENDORF	DE	1		203				318						2
				DINGOLFING-LANDAU	DE	2		275				338						4
				FREISING	DE	1		240				354						4
				WÜRZBURG	DE	1		207				351						2
				ERDING1	DE	1		282				353					171	4
				Cher	FR	1						250						2

Molfsberg AT 1 239 222	Trockenstresses für die Kultur
St. Pölten	4
Schwertberg	4
Schwertberg	4
Wieselburg	4
Ille-et-Vilaine1	4
Loire-Atlantique1	4
Sarthel	3
Sarthe2	2
MFR22_1005 2022 2 X Ille-et-Vilaine4 FR 2	3
MFR22_1005 2022 2 X	3
Maine-et-Loire1 FR 1 224 Ip3 Loir-et-Cher FR 1 248 Loire-Atlantique2 FR 1 245 Munster2 DE 2 177 298 Munster1 DE 1 293 21 WARENDORF DE 1 197 291 1 DINGOLFING-LANDAU DE 2 294 319 19 FREISING DE 1 272 319 19 WÜRZBURG DE 1 191 313 172 ERDING1 DE 1 296 316 172	3
Loir-et-Cher FR 1 248	4
Loire-Atlantique2	4
Munster2 DE 2 177 298 Munster1 DE 1 293 21 WARENDORF DE 1 197 291 197 DINGOLFING-LANDAU DE 2 294 319 194 194 FREISING DE 1 272 319 194	4
Munster1 DE 1 293 121 WARENDORF DE 1 197 291 1 DINGOLFING-LANDAU DE 2 294 319 1 FREISING DE 1 272 319 1 WÜRZBURG DE 1 191 313 1 ERDINGI DE 1 296 316 172	2
WARENDORF DE 1 [197] 29 1 DINGOLFING-LANDAU DE 2 294 319 319 FREISING DE 1 272 319 313 WÜRZBURG DE 1 191 313 313 ERDING1 DE 1 296 316 172	3
DINGOLFING-LANDAU DE 2 294 319 FREISING DE 1 272 319 WÜRZBURG DE 1 191 313 ERDING1 DE 1 296 316 172	3
FREISING DE 1 272 319 WÜRZBURG DE 1 191 313 ERDINGI DE 1 296 316 172	2
WÜRZBURG DE 1 191 313 ERDING1 DE 1 296 316 172	4
ERDING1 DE 1 296 316 172	4
	2
	4
Cher FR 1 233	2
St. Pölten AT 1 238 215	4
Wolfsberg AT 1 266 236	4
St. Pölten AT 1 242 219	4
Attnang-Puchheim AT 1 286 150	4
Schwertberg AT 2 264 174	4
Linz AT 1 266 235 138	4
Wieselburg AT 1 290 211 147 Ille-et-Vilaine1 FR 2 220 340 2	
	2
Loire-Atlantique1	3
Sarthe2 FR 1 261 367 124	3
Sature	3
MFR22_1006 2022 2 X Maine-et-Viraline4 FR 2	4
Maine-et-Loire1 FR 1 243 266	4
Loir-et-Cher FR 1 272	4
Loir-et-Cher FR 1 258	2
Munster2 DE 1 218 326	3
Munster1 DE 1 324 123	3
WARENDORF DE 1 225 317	2
WARENDORF DE 1 1223 117	4
FREISING DE 1 281 346	4
WÜRZBURG DE 1 281 350 1 1 1 1 1 1 1 1 1	2
ERDING1 DE 1 298 351 156	
Cher FR 1 240	4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife Bon.1-9	m Wuchshöhe	og 1-u 1-u 1-u 1-u 1-u 1-u 1-u 1-u 1-u 1-u	WMLL Kolbenblüte	Nebrochene Pflanzen	Istpflanzenzahl	Stängel- und Kolbenfäule	Blattflecken	Pelminthosporium	Gesamteindruck	B Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
				Wolfsberg	AT	1		262				250						4
				St. Pölten	AT	1		229				207						4
				Attnang-Puchheim	AT	1		277									146	4
				Schwertberg	AT	1		253				174						4
				Linz	AT	1		264				234					142	4
				Wieselburg	AT	3		265				209					132	4
MFR22_1007				Ille-et-Vilaine1	FR	1		220				340						3
				Loire-Atlantique1	FR	2		229				345						2
	2022	2	X	Sarthe1	FR	2		427				351						3
				Sarthe2	FR	1		240				358					110	3
				Ille-et-Vilaine4	FR	2						366					110	3
				Maine-et-Loire2	FR	1						222						4
				Maine-et-Loire1	FR	1		224				202						4
				Loir-et-Cher	FR	1						268						4
				Loire-Atlantique2	FR	1						272						2
				Munster2	DE	1		181				309						3
				Munster1	DE	1		101				315					119	3
				WARENDORF	DE	1		197				305					117	2
				DINGOLFING-LANDAU	DE	2		295				348						4
				FREISING	DE	1		281				347						4
				WÜRZBURG	DE	1		202				341						2
				ERDING1	DE	1		289				352					169	4
				Cher	FR	1		200				244					109	2
				Wolfsberg	AT	1		244				240						4
				St. Pölten	AT	1		219				215						4
				Attnang-Puchheim	AT	1		298				413					141	4
				Schwertberg	AT	2		258				195					141	4
				Linz	AT	1		264				233					129	4
				Wieselburg	AT	1		269				214					125	4
		2		Ille-et-Vilaine1	FR	1		205				340					123	3
				Loire-Atlantique1	FR	2		234				337						2
			X	Sarthe1	FR	2		434				350						3
				Sarthe2	FR	1		242				358					100	3
				Ille-et-Vilaine4	FR	2		<u></u> H				360					100	3
				Maine-et-Loire2	FR	1						187						4
MFR22_1008	2022			Maine-et-Loire1	FR	1		237				235						4
				Loir-et-Cher	FR	1		231				261						4
				Loire-Atlantique2	FR	1						239						2
				Munster2	DE	1		205				312						3
				Munster1	DE	1		203				332	-				111	3
				WARENDORF	DE	1	 	205				319					111	2
				DINGOLFING-LANDAU	DE	2		283				337						4
				FREISING	DE	1	 	280				347						4
				WÜRZBURG	DE	1	 	202				352						2
				ERDING1	DE	1		296				350					155	4
								290									133	
								120				207						
				Cher St. Pölten	FR AT	1		228				247 207						2 4

ERGEBNISSE

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife	Wuchshöhe	Jugendentwicklung	WML Kolbenblüte	Gebrochene Pflanzen	Istpflanzenzahl	Stängel- und Kolbenfäule	Blattflecken	Helminthosporium	Gesamteindruck	B Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
				Brno	CZ	2				0. Jan.		82						2
				Eferding	AT	2	4.0	305		0. Jan.		65	1.5		1.0	2.0	135	4
				Oberhummel	DE	2				0. Jan.		76						3
	2022	2	X	Pawlowice	PL	2				0. Jan.								4
				Skoloszow	PL	2	4.0	277		0. Jan.		130					118	4
				St.Pölten	AT	2	6.5	280	5.5	0. Jan.		64			1.5	3.0	120	3
				Tulln2	AT	2			5.0	0. Jan.		60	3.0			4.5		1
		2	X	Brno	CZ	2				0. Jan.		82						2
				Eferding	AT	2	5.5	350		0. Jan.		71	2.5		2.0	2.5	155	4
				Oberhummel	DE	2				0. Jan.		77						3
MFR22_1010	2022			Pawlowice	PL	2				0. Jan.								4
				Skoloszow	PL	2	7.0	292		0. Jan.		136					137	4
				St.Pölten	AT	2	8.0	325	5.0	0. Jan.		64			2.0	3.5	140	3
				Tulln2	AT	2			5.0	0. Jan.	1	67	4.5			4.0		1

3.1.8.3 Reifegruppe mittelspät/spät

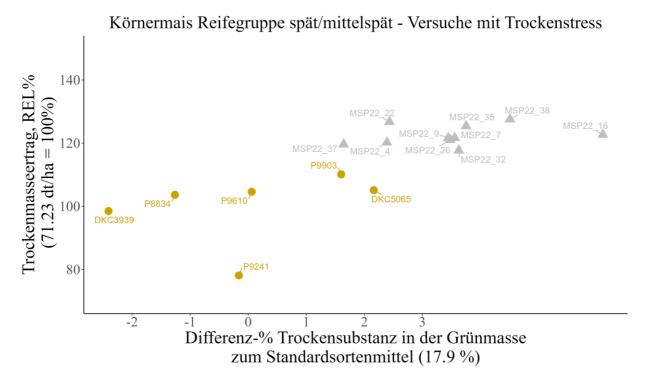


Abbildung 25: Sortenkreuz der Reifegruppe mittelspät/spät unter Trockenstress-Bedingungen. Abgebildet sind die adjustierten Kornerträge relativ zu dem Standardsortenmittel auf der Y-Achse, und die Differenzen der adjustierten Kornfeuchtigkeiten relativ zu dem Standardsortenmittel auf der X-Achse.

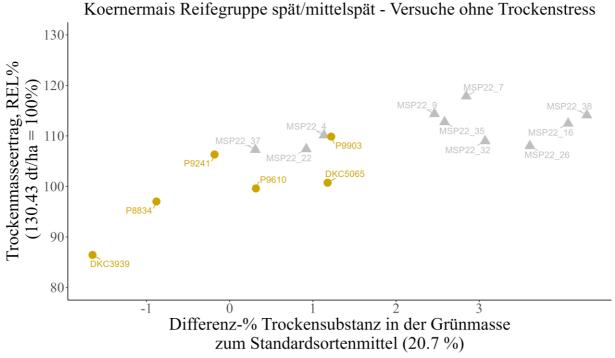


Abbildung 26: Sortenkreuz der Reifegruppe mittelspät/spät für Versuche ohne Trockenstress. Abgebildet sind die adjustierten Kornerträge relativ zu dem Standardsortenmittel auf der Y-Achse, und die Differenzen der adjustierten Kornfeuchtigkeiten relativ zu dem Standardsortenmittel auf der X-Achse.

Tabelle 39: Ausgewählte bonitierte Parameter vielversprechender Körnermais-Zuchtlinien der Reifegruppe mittelspät/spät im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Die Tabelle wird auf den nächsten Seiten fortgesetzt.

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Buly Maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur								
				Backi Maglic	SRB	2	106.8	_	2								
				Bóly	HU	2	57.3	14.1	2								
				Bozzai	HU	2	86.4	17.7	3								
				Deu.Jahrndorf	AT	2	147. 3	19.0	2								
				Lovrin	RO	2	86.7	15.8	1								
				Michelhausen	AT	2	152. 3	32.3	2								
MSP22 4	2022	4		Mureck	AT	2	179.1	22 .8	4								
N191 22_4	2022	_		Vinkovci	HR	2	78.5	14.2	2								
				Weinberg	AT	2	165.7	22 .2	3								
					Zagreb	HR	2	93.1	7.0	3							
						Békécsaba	HU	2			1						
				Furculesti	RO	2	26.6	16.5	1								
				Nyírgyulaj	HU	2	13.4	13.5	1								
				Nitra	SK	2			1								
				Backi Maglic	SRB	2	10 9.0	16.2	2								
				Deu.Jahrndorf	AT	2	151. 9	19.9	2								
	222_7 2022			Lovrin	RO	2	76.3	16.5	1								
MSP22_7		4		Mureck	AT	2	180.3	23 .7	4								
14101 22_1		7		Vinkovci	HR	2	79.1	15.0	2								
				Weinberg	AT	2	182.1	24.5	3								
							ţ				-	Békécsaba	HU	2			1
				Furculesti	RO	2	19.2	18.9	1								

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	pay Maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				Backi Maglic	SRB	2	107.7	15.8	2
				Bóly	HU	2	63.0	15.1	2
				Bozzai	HU	2	89.1	21.3	3
				Deu.Jahrndorf	AT	2	153. 6	21.2	2
				Lovrin	RO	2	78.4	16.4	1
				Michelhausen	AT	2	147.2	34.8	2
				Mureck	AT	2	180.5	24 .0	4
				Vinkovci	HR	2	87.8	14.6	2
				Weinberg	AT	2	166.6	22 .2	3
				Zagreb	HR	2	96.6	17.8	3
MSP22_9	2022	4		Backi Maglic	SRB	2	107.8	15.4	2
NIST 22_)	2022	_		Deu.Jahrndorf	AT	2	15 0.9	19.2	2
				Lovrin	RO	2	71.2	16.4	1
				Mureck	AT	2	196.4	22 .6	4
				Vinkovci	HR	2	85.7	14.7	2
				Weinberg	AT	2	170.2	24 .5	3
				Békécsaba	HU	2			1
				Furculesti	RO	2	18.0	18.2	1
				Nyírgyulaj	HU	2	14.1	1 7.7	1
				Békécsaba	HU	2			1
				Furculesti	RO	2	26.4	15.3	1
				Nitra	SK	2			1
				Backi Maglic	SRB	2		18.1	2
				Deu.Jahrndorf	AT	2		23 .3	2
				Lovrin	RO	2	70.7	20.9	1
MSP22 16	2022	4		Mureck	AT	2	179.8	_	4
11101 22_10	2022	T		Vinkovci	HR	2	85.7	15.7	2
				Weinberg	AT	2	168.5	23 .7	3
				Békécsaba	HU	2			1
				Furculesti	RO	2	12.3	21.3	1

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	p Maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				Backi Maglic	SRB	2	107.7	14.8	2
				Bóly	HU	2	7 5.7	13.9	2
				Bozzai	HU	2	85.3	16.9	3
				Deu.Jahrndorf	AT	2	155. 9	20.2	2
				Lovrin	RO	2	7 6.9	15.3	1
				Michelhausen	AT	2	<u>154.</u> 5	30.9	2
MSP22_22	2022	4		Mureck	AT	2	174.8	22.5	4
				Vinkovci	HR	2	84.7	14.0	2
				Weinberg	AT	2	155.6	23.3	3
				Zagreb	HR	2	94.4	16.2	3
				Békécsaba	HU	2	07.5	155	1
				Furculesti	RO HU	2	27.5 23.1	15.5 16.4	1
				Nyírgyulaj Nitra	SK	2	23.1	0.4	1
				Backi Maglic	SRB	2	117.7	15.9	2
				Bóly	HU	2	66.8	15.0	2
				Bozzai	HU	2	7 5.2	20.6	3
				Deu.Jahrndorf	AT	2	$\frac{1}{122.7}$	18.9	2
				Lovrin	RO	2	93.4	6.4	1
				Michelhausen	AT	2	145.0	34.4	2
				Mureck	AT	2	190.9		4
MSP22_26	2022	4		Vinkovci	HR	2	76.2	14.4	2
				Weinberg	AT	2	162.7		3
				Zagreb	HR	2		17.0	3
				Békécsaba	HU	2			1
				Furculesti	RO	2	26.7	6.7	1
				Nyírgyulaj	HU	2			1
				Nitra	SK	2			1
				Backi Maglic	SRB	2	108.3	15.2	2
				Bóly	HU	2	6 3.6	15.3	2
				Bozzai	HU	2	<u>9</u> 3.7	<u>22</u> .6	3
				Deu.Jahrndorf	AT	2	144.2		2
				Lovrin	RO	2	64.1	17.0	1
				Michelhausen	AT	2	155.3		
MSP22_32	2022	4		Mureck	AT	2	166.5		4
				Vinkovci	HR	2		14.5	2
				Weinberg	AT	2	166.6		3
				Zagreb	HR	2	91.5	19.3	3
				Békécsaba Europlasti	HU	2	10.0	15.6	1
				Furculesti	RO	2	19.8	_	1
				Nyírgyulaj Nitro	HU	2	14.7	18.2	1
				Nitra	SK	2			1

Name Jahr Reifegruppe	WP	Standort	Land	Parzellenanzahl	wd/sp Maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
		Backi Maglic	SRB	2	110.0	15.9	2
		Bóly	HU	2	62.5	14.6	2
		Bozzai	HU	2	92.5	19.4	3
		Deu.Jahrndorf	AT	2	180.0	21.1	2
		Lovrin	RO	2	56.2	16.4	1
		Michelhausen	AT	2	154. 9	34.0	2
MSP22_35 2022 4		Mureck	AT	2	194.6	23 .6	4
10101 22_33 2022 4		Vinkovci	HR	2	84.8	14.7	2
		Weinberg	AT	2	157. 8	23 .3	3
		Zagreb	HR	2	93.0	19.2	3
		Békécsaba	HU	2			1
	-	Furculesti	RO	2	24.4	16.8	1
		Nyírgyulaj	HU	2	25.7		1
		Nitra	SK	2		_	1
		Backi Maglic	SRB	2	118.8		2
		Bóly	HU	2		13.5	2
		Bozzai	HU	2		16.5	3
		Deu.Jahrndorf	AT	2	<u>129</u> .8		2
		Lovrin	RO	2	71.9	15.0	1
		Michelhausen	AT	2	144.5	31.3	2
MSP22_37 2022 4		Mureck	AT	2	162.4	22.3	4
		Vinkovci	HR	2		12.9	2
		Weinberg	AT	2	159.3		3
		Zagreb	HR	2	<u>10</u> 6.1	15.5	3
		Békécsaba	HU	2	120.5	12.5	1
		Furculesti	RO	2		13.5	1
		Nyírgyulaj	HU	2	17.1	15.9	1
		Nitra	SK	2	106.8	176	1
		Backi Maglic	SRB		10p.8		2
		Deu.Jahrndorf Lovrin	AT RO	2	80.2	16.9	2
		Mureck	AT	2	185.3		4
MSP22_38 2022 4		Vinkovci	HR	2	92.9	15.2	2
	1 - - - -	Weinberg	AT	2	167.3		3
		Békécsaba	HU	2	107.3	23.0	1
		Furculesti	RO	2	22.0	20.6	1

Rohrau	Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	a Maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur																		
Deutsch Jahrndorf					Rohrau	AT	1	56.9	19.2	1																		
Pyrénées-Atlantiques					Feldbach	AT	1	167.7	28.5	4																		
Landes2					Deutsch Jahrndorf	AT	1			4																		
Landes 1					Pyrénées-Atlantiques	FR	1		_																			
Charente							1																					
Charente-Maritime2																												
Vendée2																												
Charente-Maritime1																												
Charente-Maritime3									_																			
Haut-Rhin1									_																			
MSP22_65 2022 4 X Bas-Rhin1 FR 1 162.5 24.9 4 Haut-Rhin2 FR 1 161.1 25.3 4 Baranya HU 1 \$9.4 19.3 1 Tolna HU 1 \$46.1 18.3 1 Csongrad HU 1 100.9 20.7 3 Ain FR 1 93.8 15.2 4 Isère FR 1 154.6 18.3 4 ILFOV RO 1 92.6 13.2 3 Constantal RO 1 122.1 15.3 3 Tulcea RO 1 122.1 15.3 3 Tulcea RO 1 122.9 14.0 3 SILISTRA BG 1 123.9 14.0 3 Calarasi RO 1 64.1 15.6 1 Ialomita RO 1 101.0 6.2 3 SHUMEN BG 1 74.6 11.6 3 Constanta2 RO 1 105.1 16.3 3 Koprivnecko-Krizevacka HR 1 91.2 24.8 3 Juzno Backi SRB 1 123.0 16.2 4 Osjecko-Baranjska HR 1 39.5 16.8 1 Juzno Banatski SRB 1 81.3 15.7 3 Sremski1 SRB 1 81.3 15.7 3 Sremski2 SRB 1 80.8 17.0 3 Pomoravski SRB 1 72.4 17.1 3																												
Haut-Rhin2																												
MSP22_65 2022 4 X																												
MSP22_65 2022 4 X																												
MSP22_65 2022 4 X					-				_																			
MSP22_65 2022 4 X								_	_	_																		
MSP22_65 2022 4 X Isère FR 1 I54_6 I8.3 4 ILFOV RO 1 92.6 I3.2 3 Constantal RO 1 I22_1 I5.3 3 Tulcea RO 1 I22_1 I5.3 3 Tulcea RO 1 I22_9 I4.0 3 Calarasi RO 1 I41_8 I4.0 3 Braila RO 1 I41_8 I4.0 3 Braila RO 1 I04_0 I6.2 3 SHUMEN BG 1 74.6 I1.6 3 Constanta2 RO 1 I05_1 I6.3 3 Koprivnecko-Krizevacka HR 1 91_2 24_8 3 Juzno Backi SRB 1 I25_0 I6.2 4 Osjecko-Baranjska HR 1 I39_5 I6.8 1 Juzno Banatski SRB 1 I02_9 I6.3 3 Sremski SRB 1 I02_9 I02_9 I03_9 I0									_																			
MSP22_65 2022 4 X ILFOV RO 1 92.6 13.2 3 Constantal RO 1 122.1 15.3 3 Tulcea RO 1 129.3 15.9 3 SILISTRA BG 1 123.9 14.0 3 Calarasi RO 1 64.1 15.6 1 Ialomita RO 1 141.8 14.0 3 Braila RO 1 104.0 6.2 3 SHUMEN BG 1 74.6 11.6 3 Constanta2 RO 1 105.1 16.3 3 Koprivnecko-Krizevacka HR 1 91.2 24.8 3 Juzno Backi SRB 1 123.0 16.2 4 Osjecko-Baranjska HR 1 39.5 16.8 1 Juzno Banatski SRB 1 102.9 16.3 3 Sremski 102.9 16.3 3 Sremski SRB 1 102.9 16.3 3 Sremski SRB 1 102.9 16.3 3 Sremski SRB 1 102.9 10.3 Sremski SRB 1 102.9 10.3 Sremski SRB 1 102.9																												
Constantal RO 1 122.1 15.3 3 Tulcea RO 1 129.3 15.9 3 SILISTRA BG 1 123.9 14.0 3 Calarasi RO 1 64.1 15.6 1 Ialomita RO 1 141.8 14.0 3 Braila RO 1 104.0 16.2 3 SHUMEN BG 1 74.6 11.6 3 Constanta2 RO 1 105.1 16.3 3 Koprivnecko-Krizevacka HR 1 191.2 24.8 3 Juzno Backi SRB 1 125.0 16.2 4 Osjecko-Baranjska HR 1 139.5 16.8 1 Juzno Banatski SRB 1 102.9 16.3 3 Sremski1 SRB 1 80.8 17.0 3 Pomoravski SRB 1 7	MSP22_65	2022	4	X																								
Tulcea RO 1 129.3 5.9 3 SILISTRA BG 1 125.9 14.0 3 Calarasi RO 1 64.1 5.6 1 Ialomita RO 1 141 8 14.0 3 Braila RO 1 104.0 6.2 3 SHUMEN BG 1 74.6 11.6 3 Constanta2 RO 1 105.1 6.3 3 Koprivnecko-Krizevacka HR 1 91.2 248 3 Juzno Backi SRB 1 125.0 6.2 4 Osjecko-Baranjska HR 1 39.5 6.8 1 Juzno Banatski SRB 1 102.9 6.3 3 Sremski1 SRB 1 81.3 5.7 3 Sremski2 SRB 1 80.8 7.0 3 Pomoravski SRB 1 72.4 7.1 3							1		_																			
Calarasi RO 1 64.1 15.6 1 Ialomita RO 1 1418 14.0 3 Braila RO 1 104.0 16.2 3 SHUMEN BG 1 74.6 11.6 3 Constanta2 RO 1 105.1 16.3 3 Koprivnecko-Krizevacka HR 1 9 2 24.8 3 Juzno Backi SRB 1 125.0 16.2 4 Osjecko-Baranjska HR 1 139.5 16.8 1 Juzno Banatski SRB 1 102.9 16.3 3 Sremski1 SRB 1 81.3 15.7 3 Sremski2 SRB 1 80.8 17.0 3 Pomoravski SRB 1 72.4 17.1 3							1	129.3	15.9																			
Ialomita RO 1 141 8 14.0 3 Braila RO 1 104.0 6.2 3 SHUMEN BG 1 74.6 11.6 3 Constanta2 RO 1 105.1 16.3 3 Koprivnecko-Krizevacka HR 1 91.2 24.8 3 Juzno Backi SRB 1 125.0 16.2 4 Osjecko-Baranjska HR 1 139.5 16.8 1 Juzno Banatski SRB 1 102.9 16.3 3 Sremski 1 SRB 1 81.3 15.7 3 Sremski 2 SRB 1 80.8 17.0 3 Pomoravski SRB 1 72.4 17.1 3					SILISTRA	BG	1	125.9	14.0	3																		
Braila RO 1 104.0 6.2 3 SHUMEN BG 1 74.6 11.6 3 Constanta2 RO 1 105.1 16.3 3 Koprivnecko-Krizevacka HR 1 9 .2 24.8 3 Juzno Backi SRB 1 125.0 16.2 4 Osjecko-Baranjska HR 1 139.5 16.8 1 Juzno Banatski SRB 1 102.9 16.3 3 Sremski 1 SRB 1 81.3 15.7 3 Sremski 2 SRB 1 80.8 17.0 3 Pomoravski SRB 1 72.4 17.1 3					Calarasi	RO	1	6 4.1	15.6	1																		
SHUMEN BG 1 74.6 11.6 3 Constanta2 RO 1 105.1 16.3 3 Koprivnecko-Krizevacka HR 1 9.2 24.8 3 Juzno Backi SRB 1 125.0 16.2 4 Osjecko-Baranjska HR 1 139.5 16.8 1 Juzno Banatski SRB 1 102.9 16.3 3 Sremski1 SRB 1 81.3 15.7 3 Sremski2 SRB 1 80.8 17.0 3 Pomoravski SRB 1 72.4 17.1 3					Ialomita	RO	1	141.8	14.0	3																		
Constanta2 RO 1 105.1 16.3 3 Koprivnecko-Krizevacka HR 1 91.2 24.8 3 Juzno Backi SRB 1 125.0 16.2 4 Osjecko-Baranjska HR 1 139.5 16.8 1 Juzno Banatski SRB 1 102.9 16.3 3 Sremski 1 SRB 1 81.3 15.7 3 Sremski 2 SRB 1 80.8 17.0 3 Pomoravski SRB 1 72.4 17.1 3					Braila	RO	1	104.0	16.2																			
Koprivnecko-Krizevacka HR 1 9 .2 24 8 3 Juzno Backi SRB 1 125 .0 16.2 4 Osjecko-Baranjska HR 1 139.5 16.8 1 Juzno Banatski SRB 1 102.9 16.3 3 Sremski1 SRB 1 81.3 15.7 3 Sremski2 SRB 1 80.8 17.0 3 Pomoravski SRB 1 72.4 17.1 3					SHUMEN	BG	1	74.6																				
Juzno Backi SRB 1 125.0 16.2 4 Osjecko-Baranjska HR 1 139.5 16.8 1 Juzno Banatski SRB 1 102.9 16.3 3 Sremski 1 SRB 1 81.3 15.7 3 Sremski 2 SRB 1 80.8 17.0 3 Pomoravski SRB 1 72.4 17.1 3						RO	1																					
Osjecko-Baranjska HR 1 39.5 6.8 1 Juzno Banatski SRB 1 102.9 6.3 3 Sremski 1 SRB 1 81.3 15.7 3 Sremski 2 SRB 1 80.8 17.0 3 Pomoravski SRB 1 72.4 17.1 3					•		1																					
Juzno Banatski SRB 1 102.9 6.3 3 Sremski 1 SRB 1 81.3 15.7 3 Sremski 2 SRB 1 80.8 17.0 3 Pomoravski SRB 1 72.4 17.1 3																												
Sremski 1 SRB 1 81.3 15.7 3 Sremski 2 SRB 1 80.8 17.0 3 Pomoravski SRB 1 72.4 17.1 3																												
Sremski2 SRB 1 80.8 17.0 3 Pomoravski SRB 1 72.4 17.1 3																												
Pomoravski SRB 1 72.4 7.1 3																												
															 												_	
Leon1 ES 1 161.5 18.2 4					·																							
Leon2 ES 1 181.6 17.6 4																												

Name Jahr Reifegruppe WP	Standort	Land	Parzellenanzahl	ad/h Maisertrag (14% IEO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
	Rohrau	AT	1	69.4	22.0	1
	Feldbach	AT	1	168.5	29.5	4
	Deutsch Jahrndorf	AT	1	145.9	24.8	4
	Pyrénées-Atlantiques	FR	1	76.0	19.5	2
	Landes2	FR	1	73.6	17.4	2
	Landes1	FR	1	124.0	15.2	4
	Charente	FR	1	86.8	22.2	4
	Charente-Maritime2	FR	1	98.8	16.0	4
	Vendée2	FR	1	33.5	22.1	2
	Charente-Maritime1	FR	1	105.7 74.0	14.7 2 0.0	4
	Charente-Maritime3 Haut-Rhin1	FR FR	1	142.3	22.0	3
	Bas-Rhin1	FR	1	162.5	29.9	4
	Haut-Rhin2	FR	1	145.9	31.0	4
	Baranya	HU	1	56.8	19.6	1
	Tolna	HU	1	39.9	18.9	1
	Csongrad	HU	1	90.8	22.3	3
	Ain	FR	1	98.7	17.0	4
	Isère	FR	1	170.0	20.9	4
MSP22_69 2022 4 X	ILFOV	RO	1		13.2	3
	Constanta1	RO	1	124.4	15.7	3
	Tulcea	RO	1	128.5	14.6	3
	SILISTRA	BG	1	113.1	13.2	3
	Calarasi	RO	1		14.8	1
	Ialomita	RO	1	115.9	13.0	3
	Braila	RO	1	114.0	18.3	3
	SHUMEN	BG	1		12.0	3
	Constanta2	RO	1	<u>10</u> 0.0		3
	Koprivnecko-Krizevacka	HR	1	87.9	<u>22</u> .8	3
	Juzno Backi	SRB	1	127.7	16.0	4
	Osjecko-Baranjska	HR	1	38.8	18.2	1
	Juzno Banatski	SRB	1	103.5		3
	Sremski1	SRB	1	87.8	15.6	3
	Sremski2	SRB	1	89.5	16.9	3
	Pomoravski	SRB	1	87.9 35.4	16.6 12.3	3
	Srednje-Banatski Leon1	SRB ES	1 1	156.7		4
	Leon2	ES	1	184.8		4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	ad/p Maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur					
				Mooskirchen	AT	1	160.0	2 6.1	4					
				Rohrau	AT	1	71.4	19.1	1					
				Feldbach	AT	1	<u>158.</u> 1	27.5	4					
				Deutsch Jahrndorf	AT	1	128.6	22.5	4					
				Tulln	AT	1		12.4	2					
				Pyrénées-Atlantiques Charente-Maritime2	FR FR	1	74.4	18.4	2 4					
				Charente-Maritime4	FR	1	59.9	14.5	1					
				Vendée1	FR	1	32.5	17.5	2					
				Vendée2	FR	1	28.8	20.4	2					
				Freiburg1	DE	1	69.1	21.4	2					
				Côte-d`Or	FR	1	122.9	27.4	4					
				Bas-Rhin1	FR	1	146.2	23.2	4					
				Haut-Rhin2	FR	1	143.2	29.0	4					
				Freiburg2	DE	1	144.9	22.2	4					
				Baranya	HU	1	6 3.0	17.1	1					
				Tolna	HU		40.5	17.1	1					
MCD22 72	2022	4	v	Csongrad	HU	1	90.2	19.4	3					
MSP22_73	2022	4	X	Ain Isère	FR FR	1	103.9 150.7	16.3 16.4	4					
				ILFOV	RO	1		12.5	3					
				Constanta1	RO	1	119.4	14.5	3					
				Tulcea	RO		120.3		3					
				SILISTRA	BG	1	109.3		3					
				Calarasi	RO	1	68.4	15.0	1					
				Ialomita	RO	1	132.5	13.0	3					
				Braila	RO	1	117.6	16.2	3					
				SHUMEN	BG	1	71.6	10.3	3					
				Constanta2	RO	1	96.0	16.1	3					
				Koprivnecko-Krizevacka	HR	1	83.9	22.1	3					
				Juzno Backi	SRB	1	124.2		4					
				Osjecko-Baranjska Juzno Banatski	HR SRB	1	47.2 91.3	16.5 15.3	3					
			-		Sremski2	SRB	1	83.0	17.0	3				
						-			Srednje-Banatski	SRB	1	35.1	13.0	1
							Leon1	ES	1		19.1	4		
				Leon2	ES	1	169.1	17.2	4					

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	a Maisertrag (14% IbO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur			
				Wolfsberg	AT	1	144.4	30.3	4			
				St. Pölten	AT	1	136.0	30.7	4			
				Mooskirchen	AT	1	156.1	26.7	4			
				Schwertberg	AT	1	125.4		4			
				Rohrau	AT	1	6 7.4	18.8	1			
				Feldbach	AT	1			4			
				Tulln	AT	1	90.9	13.1	2			
				Sarthe2	FR	1	93.0	21.6	3			
				Pyrénées-Atlantiques	FR	1	65.3	18.0	2			
				Maine-et-Loire2	FR	1	113.3	25 .8	4			
				Maine-et-Loire1	FR	1	138.4	22 .0	4			
				Charente-Maritime4	FR	1	48.8	13.8	1			
				Loir-et-Cher	FR	1	102.9	20.7	4			
				Vendée1	FR	1	63.4	16.0	2			
MSP22_75	2022	3	X	Loire-Atlantique2	FR	1	35.8	26 .0	2			
NIST 22_13	2022	3	Λ	Vendée2	FR	1	36.0	20.2	2			
				Freiburg1	DE	1	74.8	18.9	2			
				Bas-Rhin2	FR	2	115.3	21.9	4			
				Côte-d`Or	FR	1			4			
				Freiburg2	DE	1	136.5		4			
				Baranya	HU	1	6 2.4	1 7.1	1			
				Tolna	HU	1	48.9	17.9	1			
				Csongrad	HU	1	104.7	20.1	3			
				Cher	FR	1	68.3	18.2	2			
				Ain	FR	1	101.5	14.6	4			
			_	-		_	ILFOV	RO	1	10 0.1	12.4	3
				Bacau	RO	1	34.6	17.5	1			
				Calarasi	RO	1		14.4	1			
				STARA ZAGORA	BG	1		11.7	1			
				VRATZA	BG	1	83.0	12.6	2			

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	a Maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur		
				Rohrau	AT	1	63.3	20.1	1		
				Feldbach	AT	1	163.7	30.3	4		
				Deutsch Jahrndorf	AT	1	133.1	25 .0	4		
				Pyrénées-Atlantiques	FR	1	74.7	19.9	2		
				Landes2	FR	1	70.5	17.6	2		
				Landes1	FR	1	166.9	16.7	4		
				Charente	FR	1	98.5	19.3	4		
				Charente-Maritime2	FR	1	111.7	15.8	4		
				Vendée2	FR	1	32.2	21.2	2		
				Charente-Maritime1	FR	1	75.0	160	4		
				Charente-Maritime3	FR FR	1	75.2 135.8	16.9 21.0	3		
				Haut-Rhin1 Bas-Rhin1	FR	1	155.4	23.7	4		
				Haut-Rhin2	FR	1	122.2	30.5	4		
				Baranya	HU	1	\$1.7	20.6	1		
				Tolna	HU	1	44.8	19.7	1		
				Csongrad	HU	1	93.3	22 .3	3		
				Ain	FR	1	83.9	16.3	4		
3.5GD44 = 5	2022			Isère	FR	1	171.8	18.9	4		
MSP22_76	2022	4	X	ILFOV	RO	1	105.8	12.9	3		
				Constanta1	RO	1	122.0	15.0	3		
				Tulcea	RO	1	127.1	15.8	3		
				SILISTRA	BG	1	118.2	12.6	3		
				Calarasi	RO	1	68.6	14.9	1		
				Ialomita	RO	1	143.7		3		
				Braila	RO	1	<u>10</u> 2.5	19.4	3		
				SHUMEN	BG	1	75.2	11.0	3		
				Constanta2	RO	1	101.8		3		
				Koprivnecko-Krizevacka	HR	1	95.7	22.8	3		
				Juzno Backi	SRB	1	125.5	16.5	4		
				Osjecko-Baranjska	HR	1	49.6 105.5	15.8	1		
				Juzno Banatski	SRB	1	10p.5 84.1		3		
			-			Sremski1 Sremski2	SRB SRB	1	84.1 85.0	15.7 17.1	3
				Pomoravski	SRB	1	85.4	16.5	3		
				Srednje-Banatski	SRB	1	-	13.4	1		
				Leon1	ES	1	166.0		4		
				Leon2	ES	1	184.8		4		

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	baly Maisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur			
				Wolfsberg	AT	1	132.1	30.7	4			
				St. Pölten	AT	1	124.2	28.0	4			
				Mooskirchen	AT	1	162.6	26.4	4			
				Schwertberg	AT	1	142.8	28.7	4			
				Rohrau	AT	1	62.5	18.6	1			
				Feldbach	AT	1	156.2	26.3	4			
					Tulln	AT	2	86.6	12.8	2		
				Sarthe2	FR	1	143.0	19.3	3			
				Pyrénées-Atlantiques	FR	1	63.4	21.0	2			
				Maine-et-Loire2	FR	1	97.7	22.3	4			
				Maine-et-Loire1	FR	1			4			
				Charente-Maritime4	FR	1	43.5	14.0	1			
				Loir-et-Cher	FR	1	118.7	24.1	4			
				Vendée1	FR	1			2			
MCD22 77	2022	3	X	Loire-Atlantique2	FR	1	38.7	26.3	2			
MSP22_77	2022	3	Λ	Vendée2	FR	1	30.0	22.4	2			
				Freiburg1	DE	1	75.8	20.1	2			
				Bas-Rhin2	FR	2	122.3	22.4	4			
				Côte-d`Or	FR	1	132.5	27 .8	4			
							Freiburg2	DE	1	120.0	21.4	4
				Baranya	HU	1	65.1	18.6	1			
				Tolna	HU	1	50.3	18.7	1			
				Csongrad	HU	1			3			
				Cher	FR	1	7 5.4		2			
				Ain	FR	1	112.3		4			
				ILFOV	RO	1	120.9	12.3	3			
				Bacau	RO	1	22.4	18.8	1			
				Calarasi	RO	1			1			
				STARA ZAGORA	BG	1		13.3	1			
				VRATZA	BG	1	85.9	12.5	2			

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	baly Maisertrag (14% HbO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				Wolfsberg	AT	1	134.4		4
				St. Pölten	AT	1	133.0		4
				Mooskirchen	AT	1	159.8	25.8	4
				Schwertberg	AT	1	143.3		4
				Rohrau	AT	1	6 7.1	18.3	1
				Feldbach	AT	1	155.3	25.1	4
				Tulln	AT	1	70.1	13.4	2
				Sarthe2	FR	1	134.3	20.2	3
				Pyrénées-Atlantiques	FR	1	68.4	20.4	2
				Maine-et-Loire2	FR	1	118.7	28.7	4
				Maine-et-Loire1	FR	1	134.4	22 .9	4
				Charente-Maritime4	FR	1		14.4	1
				Loir-et-Cher	FR	1	109.0	22 .1	4
				Vendée1	FR	1	35.8	16.5	2
MSP22_78	2022	3	X	Loire-Atlantique2	FR	1	44.4	23 .8	2
WIST 22_76	2022	3	71	Vendée2	FR	1	29.7	21.4	2
				Freiburg1	DE	1	83.4	19.5	2
				Bas-Rhin2	FR	2	129.0	20.5	4
				Côte-d`Or	FR	1			4
				Freiburg2	DE	1	<u>135</u> .6		4
				Baranya	HU	1	71.9	18.2	1
				Tolna	HU	1	50.3	18.8	1
				Csongrad	HU	1	<u>11</u> 6.8	18.2	3
				Cher	FR	1		16.9	2
				Ain	FR	1	<u>10</u> 3.7	_	4
				ILFOV	RO	1	<u>119</u> .0	=	3
				Bacau	RO	1	39.3	17.3	1
				Calarasi	RO	1		14.0	1
				STARA ZAGORA	BG	1		12.4	1
				VRATZA	BG	1	80.0	12.8	2

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	pd/pd Maisertrag (14% H O)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				Wolfsberg	AT	1	128.4		4
				St. Pölten	AT	1	139.3	_	4
				Mooskirchen	AT	1	<u>153.</u> 4	_	4
				Schwertberg	AT	2	<u>125</u> .4		4
				Rohrau	AT	1	6 9.6	1 7.1	1
				Feldbach	AT	1	<u>138</u> .5	23 .3	4
				Tulln	AT	1	6 7.4	11.4	2
				Sarthe2	FR	1	<u>136</u> .3	17.4	3
				Pyrénées-Atlantiques	FR	1	56.4	1 7.7	2
				Maine-et-Loire2	FR	1	94.3	24.4	4
				Maine-et-Loire1	FR	1	<u>135</u> .6	<u>22</u> .7	4
				Charente-Maritime4	FR	1	6 6.0	14.2	1
				Loir-et-Cher	FR	1	111.0	22 .2	4
				Vendée1	FR	1	55.6	15.8	2
MSP22_83	2022	3	X	Loire-Atlantique2	FR	1	49.8	21.4	2
WIST 22_03	2022	3	71	Vendée2	FR	1	34.9	18.8	2
				Freiburg1	DE	1	73.3	19.7	2
				Bas-Rhin2	FR	2	121.4	23.4	4
				Côte-d`Or	FR	1	123.9	27. 6	4
				Freiburg2	DE	1	142.8	20.3	4
				Baranya	HU	1	6 7.6	17.9	1
				Tolna	HU	1	56.4	17.9	1
				Csongrad	HU	1	112.1		3
				Cher	FR	1	82.5	16.7	2
				Ain	FR	1	97.9	15.5	4
				ILFOV	RO	1	110.4	_	3
				Bacau	RO	1	47.4	15.9	1
				Calarasi	RO	1		14.0	1
				STARA ZAGORA	BG	1	_	12.6	1
				VRATZA	BG	1	82.5	12.5	2

Name Reifegruppe WP Standort Land Parzellenanzahl Parzellenanzahl Amisertrag (14% H20)	
Mooskirchen AT 1 153.6 25	
Rohrau AT 1 72.2 19	
Feldbach AT 1 142 8 25	_
Deutsch Jahrndorf AT 1 117.1 22	
Tulln AT 1 58.4 12	
Pyrénées-Atlantiques FR 1 75.5 18	
	5.9 4
	1.2 1 5.4 2
Vendée2 FR 1 54.5 20	
Freiburg1 DE 1 93.3 22	
Côte-d'Or FR 1 127.9 30	
Bas-Rhin1 FR 1 140 8 23	
Haut-Rhin2 FR 1 145 8 27	
Freiburg2 DE 1 131.7 22	2.1 4
Baranya HU 1 71.2 19	0.4 1
Tolna HU 1 51.8 20	
Csongrad HU 1 104.9 21	
	7.4 4
	7.0 4
ILFOV RO 1 124.0 12	
Constanta 1 RO 1 125.3 14 Tulcea RO 1 115.7 14	
Tulcea RO 1 115.7 14 SILISTRA BG 1 109.4 13	
Calarasi RO 1 68.4 113	
Ialomita RO 1 134,9 12	
Braila RO 1 12d.0 16	
SHUMEN BG 1 86.7 10	
Constanta2 RO 1 106.3 15	
Koprivnecko-Krizevacka HR 1 95.3 24	.6 3
	5.4 4
Osjecko-Baranjska HR 1 49.8 18	
	5.5 3
	1.2 3
Srednje-Banatski SRB 1 50.4 12 Leon1 ES 1 139.9 22	
Leon1 ES 1 139 22 Leon2 ES 1 128.1 17	

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Daisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				Rohrau	AT	1	69.5	20.5	1
				Feldbach	AT	1	166.7	27 .3	4
				Deutsch Jahrndorf	AT	1	137.8	23 .7	4
				Pyrénées-Atlantiques	FR	1	70.5	19.9	2
				Landes2	FR	1	48.9	21.2	2
				Landes1	FR	1	153. 7	15.8	4
				Charente	FR	1	121.3	16.0	4
				Charente-Maritime2	FR	1	89.1	15.5	4
				Vendée2	FR	1	42.1	22 .1	2
				Charente-Maritime1	FR	1			4
				Charente-Maritime3	FR	1	72.9	19.9	3
				Haut-Rhin1	FR	1	149.1	18.7	3
				Bas-Rhin1	FR	1	<u>148.</u> 7	26. 8	4
				Haut-Rhin2	FR	1	141.8	27.7	4
				Baranya	HU	1	60.3	18.2	1
				Tolna	HU	1	47.5	22 .1	1
				Csongrad	HU	1	93.8	20.1	3
				Ain	FR	1	104.2	19.0	4
MSP22_108	2022	4	X	Isère	FR	1	<u>149.</u> 5	18.5	4
1122 22_100	2022	Ċ	11	ILFOV	RO	1	95.0	12.3	3
				Constanta1	RO	1	126.1	14.8	3
				Tulcea	RO	1	125.2	14.8	3
				SILISTRA	BG		116.3		3
				Calarasi	RO	1		14.0	1
				Ialomita	RO	1	144.0	_	3
				Braila	RO	1	128.3		3
				SHUMEN	BG	1	91.1	11.4	3
				Constanta2	RO	1	93.7	15.8	3
				Koprivnecko-Krizevacka	HR	1	85.0	26. 3	3
				Juzno Backi	SRB	1	125.8		4
				Osjecko-Baranjska	HR	1	44.5	15.3	1
				Juzno Banatski	SRB	1	94.3	17.3	3
				Sremski1	SRB	1	72.3	16.8	3
				Sremski2	SRB	1	70.0	16.8	
				Pomoravski	SRB SRB	1	79.2 31.0	16.6 14.0	3
				Srednje-Banatski Leon1	ES	1 1		18.2	4
				Leon2	ES	1		18.5	4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Raisertrag (14% HO)	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
				Boly	HU	2	59.2	2 6.4	1
				Brux	FR	2	128.3	31.0	1
MSP22_435	2022	3	X	Dalga	RO	2	26.5	21.3	1
WIST 22_433	2022	3	Λ	Ilz2	AT	2	147.6	24.6	2
				Lovrin	RO	2	6 5.9	14.3	1
				Tulln2	AT	2	105.2	16.7	1
				Boly	HU	2	59.0	2 4.6	1
				Brux	FR	2	117.5	28.4	1
MSP22_449	2022	3	X	Dalga	RO	2	28.2	22.4	1
11101 22_77	2022	5	71	Ilz2	AT	2	145.1	24.9	2
				Lovrin	RO	2	59.6	13.5	1
				Tulln2	AT	2	102.7	16.2	1

ERGEBNISSE

Tabelle 40: Ausgewählte bonitierte Parameter vielversprechender Körnermais-Zuchtlinien der Reifegruppe spät/mittelspät im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt.

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife	w Wuchshöhe	9-1-ngendentwicklung	MMTT Wolbenblüte	Gebrochene Pflanzen	arel	Stängel- und Kolbenfäule	Blattflecken	6- Helminthosporium	Gesamteindruck	E Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
, ,			_	Backi Maglic	SRB	2	7.0									3.0		2
				Bóly	HU	2	8.5									5.5		2
				Bozzai	HU	2	6.0									4.5		3
				Deu.Jahrndorf	AT	2	7.5	245					3.0			3.0		2
				Lovrin	RO	2	6.5				1					5.0		1
				Michelhausen	AT	2	4.0	250	4.0	7. Jul.	1	76						2
MSP22_4	2022	4		Mureck	AT	2		342	4.5	6. Jul.			4.0			4.0		4
WISF 22_4	2022	4		Vinkovci	HR	2	7.5					67				5.0		2
			[Weinberg	AT	2	6.0	315	4.0	5. Jul.	1		3.0	4.5		3.0		3
				Zagreb	HR	2	6.0	257			2	76				3.6		3
				Békécsaba	HU	2										7.0		1
				Furculesti	RO	2												1
				Nyírgyulaj	HU	2										8.0		1
				Nitra	SK	2												1
				Backi Maglic	SRB	2	7.5									3.0		2
				Deu.Jahrndorf	AT	2	6.5	240					4.0			4.0		2
				Lovrin	RO	2	6.5									6.0		1
MSP22_7	2022	4		Mureck	AT	2	4.5	350	4.5	10. Jul.								4
_				Vinkovci	HR	2	7.0	200	1.0				- h	- L		4.0		2
				Weinberg	AT	2	5.0	30 0	4.0	8. Jul.			4.0	3.5		4.0		3
				Békécsaba	HU	2										8.0		1
				Furculesti	RO	2										• •		1
				Backi Maglic	SRB	2	7.5									2.0		2
				Bóly	HU	2	7.5									5.0		2
				Bozzai	HU	2	8.5	245					3.0			3.5 3.0		3
				Deu.Jahrndorf	AT	2	7.5 7.0	243			- la		0.6			1		2
				Lovrin Michelhausen	RO AT	2	2.0	250	5.0	11. Jul.	4	69				6. 0		2
				Mureck	AT	2	2.0	360	5.0	9. Jul.	1	09						4
				Vinkovci	HR	2	7.5	300	3.0	9. Jui.	1	54				4.0		2
				Weinberg	AT	2	5.5	323	4.0	9. Jul.		34	3.0	3.0		2.0		3
				Zagreb	HR	2	5.5	264	H .0	7. Jui.	1	73	0.0	5.0		3.6		3
				Backi Maglic	SRB	2	8.0	207			1	13				5.0		2
MSP22_9	2022	4		Deu.Jahrndorf	AT	2	8.0	250					3.0			4.0		2
				Lovrin	RO	2	6.5						~			5.5		1
				Mureck	AT	2	6.5	367	5.5	10. Jul.			3.0			5.0		4
				Vinkovci	HR	2	8.0						~			3.5		2
				Weinberg	AT	2	4.5	320	4.5	9. Jul.			4.0	3.0		3.0		3
				Békécsaba	HU	2										8.0		1
				Furculesti	RO	2												1
				Nyírgyulaj	HU	2										8.5		1
				Békécsaba	HU	2										9.0		1
				Furculesti	RO	2												1
				Nitra	SK	2												1

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife	m Wuchshöhe	Jugendentwicklung	WMTT Wolbenblüte	Gebrochene Pflanzen	arzell	Stängel- und Kolbenfäule	Blattflecken	Helminthosporium	Gesamteindruck	Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
	ſ	R	>	Backi Maglic	SRB	2	7.5	CIII	B011.1-9	1 I IVIIVI		arzen		БОП	.1-9	2.0	cm	
				Deu.Jahrndorf	AT	2	6.5	245			1		3.0			4.0		2 2
				Lovrin	RO	2	6.0	Z#3			1		0.0			6.0		1
				Mureck	AT	2	5.0	354	4.5	10 11	1					0,0		4
MSP22_16	2022	4		Vinkovci	HR	2	6.5	334	4,5	10. Jul.	1					4.0		
					_	2	6.0	310	3.5	11. Jul.	1		20	3.5		3.0		2
				Weinberg Békécsaba	AT HU	2	0.0	310	3.3	11. Jul.			0.0	p.3		8.0		3
						_										8.0		_
-				Furculesti Pagli Maglia	RO	2	7.5				1					50		1
				Backi Maglic	SRB	2	7.5				1					5.0		2
				Bóly	HU	2	7.5	-								4.0		2
				Bozzai	HU	2	7.5	ماد					h			4.0		3
				Deu.Jahrndorf	AT	2		216					4.0			3.0		2
				Lovrin	RO	2	8.0	300		5 Y 1	2					6. 0		1
				Michelhausen	AT	2	4.0	220	5.0	7. Jul.	2	71						2
MSP22_22	2022	4		Mureck	AT	2		310	5.0	5. Jul.								4
_				Vinkovci	HR	2	8.0		- 4			57	- 0	• •		4.0		2
				Weinberg	AT	2	5.0	280	5.0	5. Jul.			5.0	2.0		5.0		3
				Zagreb	HR	2	6.5	250			1	72				4.6		3
				Békécsaba	HU	2										7.0		1
				Furculesti	RO	2												1
				Nyírgyulaj	HU	2										6.8		1
				Nitra	SK	2												1
				Backi Maglic	SRB	2	7.0									5.0		2
				Bóly	HU	2	6.0									5.5		2
				Bozzai	HU	2	6.0				1					4.5		3
				Deu.Jahrndorf	AT	2	7.0	250			1		5.0			6.0		2
				Lovrin	RO	2	6.5									7.0		1
				Michelhausen	AT	2	2.0	250	4.0	11. Jul.	2	72						2
MSP22_26	2022	4		Mureck	AT	2		376	3.5	10. Jul.			5.0			5.0		4
		-		Vinkovci	HR	2	8.0				1	64				4.0		2
				Weinberg	AT	2	5.0	310	4.0	9. Jul.		57	5.0	2.0		4.0		3
				Zagreb	HR	2	5.5	289			7	76				4.6		3
				Békécsaba	HU	2										8.5		1
				Furculesti	RO	2												1
				Nyírgyulaj	HU	2										9.0		1
				Nitra	SK	2												1
				Backi Maglic	SRB	2	8.0				1					5.0		2
				Bóly	HU	2	7.0									5.5		2
				Bozzai	HU	2	8.0				1					4.0		3
				Deu.Jahrndorf	AT	2	8.0	245					4.0			4.0		2
				Lovrin	RO	2	6.5					h				6.5		1
				Michelhausen	AT	2		240	6.5	12. Jul.	1	79						2
MSP22_32	2022	4		Mureck	AT	2		320	6.0	10. Jul.								4
	1022	T		Vinkovci	HR	2	7.0					66				4.0		2
				Weinberg	AT	2	5.0	303	5.0	8. Jul.			5.0	2.5		5.0		3
				Zagreb	HR	2	6.5	262			2	74				4.6		3
				Békécsaba	HU	2										8.0		1
				Furculesti	RO	2												1
				Nyírgyulaj	HU	2										8.5		1
			. [Nitra	SK	2												1

MSP22_37 2022 4 Backi Maglic SRB 2 7.0	Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife	m Wuchshöhe	Jugendentwicklung Bon.1-9	WMTT Wolbenblüte	Gebrochene Pflanzen	Istpflanzenzahl	Stängel- und Kolbenfäule	nog Blattflecken	Helminthosporium	Gesamteindruck	E Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
B6ly		-	1						CIII	DOII.1-7	1 1 IVIIVI	aii/ 1	arzen		DOII		3.0	CIII	2
MSP22_35 MSP22_37 MSP22_37								-											2
MSP22_35 2022 4 Deu_Jahrndorf AT 2 7.5 250																	5.5		3
MSP22_35 2022 4						_			250					40					2
MSP22_35 2022 4 Michelhausen AT 2 4.0 240 5.0 13. Jul. 3 75						_			200			1							1
MSP22_35 2022 4 Mureck								1	240	5.0	13. Jul.	_	75						2
Vinkovci													,,,	5.0			5.0		4
Weinberg	MSP22_35	2022	4					7.5		1.10	0.000		64				5.0		2
MSP22_37 2022 4					Weinberg	AT	_	6.0	305	4.0	9. Jul.	1		5.0	2.5				3
Békécsaba												4	73						3
Nyfrgyulaj							_												1
Nitra SK 2					Furculesti	RO	2												1
Backi Maglic SRB 2 8.0					Nyírgyulaj	HU	2										9.0		1
Bóly HU 2 8.0					Nitra	SK	2												1
Bozzai					Backi Maglic	SRB	2	8.0											2
MSP22_37 2022 4					Bóly	HU	2	8.0											2
MSP22_37 2022 4 Lovrin RO 2 8.5 1 1 1 6.0 Michelhausen AT 2 4.0 235 5.0 10. Jul. 2 75 Mureck AT 2 356 5.0 9. Jul. Vinkovci HR 2 8.5 65 65 4.0 Weinberg AT 2 7.0 300 4.0 5. Jul. 1 47 4.0 7.5 4.0																			3
MSP22_37 2022 4 Michelhausen AT 2 4.0 235 5.0 10. Jul. 2 75 Mureck AT 2 356 5.0 9. Jul. Vinkovci HR 2 8.5 65 4.0 Weinberg AT 2 7.0 300 4.0 5. Jul. 1 47 4.0 7.5 4.0							_		255					5.0					2
MSP22_37 2022 4 Mureck AT 2 356 5.0 9. Jul. Vinkovci HR 2 8.5 65 4.0 Weinberg AT 2 7.0 300 4.0 5. Jul. 1 47 4.0 7.5 4.0						_						_					6.0		1
MSP22_37 2022 4 Vinkovci HR 2 8.5								4.0				2	75						2
Vinkovci HR 2 8.5 65 4.0 4.0 Weinberg AT 2 7.0 300 4.0 5. Jul. 1 47 4.0 7.5 4.0	MSP22 37	2022	4						356	5.0	9. Jul.								4
												•	_						2
7 Tograph HD 7 65 1901 1 1 1							_			4.0	5. Jul.	_	47	4.0	7.5				3
					Zagreb	HR	2	6.5	280			2					4.0		3
Békécsaba HU 2 6.5																	6.5		1
Furculesti RO 2																	0.0		1
Nyírgyulaj HU 2 8.0					, ,,												8.0		1
Nitra SK 2							_	7.5									2.0		1
Backi Maglic SRB 2 7.5								1	240			1		4 b					2
							_		240			1		4.0					2
Murralt AT 2 50 221 40 10 Iul 1 60 60									321	4.0	10 101	1		6.0					4
MSP22_38 2022 4	MSP22_38	2022	4						334	#.U	10. Jul.	1		0.0					2
Weinberg AT 2 4.5 300 4.0 11. Jul. 6.0 2.5 6.0									300	4.0	11 Inl			6.0	2.5				3
Békécsaba HU 2 8.0								7.3	200	TT.U	11. Jul.			0.0	ر. 2 ا				1
Furculesti RO 2																	0.0		1

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife	m Wuchshöhe	Jugendentwicklung	WMTT Wolbenblüte	Gebrochene Pflanzen	Istpflanzenzahl	Stängel- und Kolbenfäule	Blattflecken	6- Helminthosporium	Gesamteindruck	g Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
	ſ	F	~	Rohrau	AT	1	B011.1-9	178	D011.1-9	1 1 IVIIVI	aiii/r	215		DOI	.1-9		CIII	1 1
				Feldbach	AT	1		315				212					144	4
				Deutsch Jahrndorf	AT	1		205				213					106	4
				Pyrénées-Atlantiques	FR	1		231				25 ₂					105	2
				Landes2	FR	1		265				251					120	2
				Landes1	FR	1		243				262					99	4
				Charente	FR	1		2+3				246					_J77	4
				Charente-Maritime2	FR	1						251						4
				Vendée2	FR	1						251						2
				Charente-Maritime1	FR	1						259					106	4
				Charente-Maritime3	FR	1		220				253					81	3
				Haut-Rhin1	FR	1		420				233					01	3
				Bas-Rhin1	FR	1		278				320						4
				Haut-Rhin2	FR	1		335				317					140	4
				Baranya	HU	1						239						1
				Tolna	HU	1						245					118	1
				Csongrad	HU	1		201				261					94	3
				Ain	FR	1						340						4
1				Isère	FR	1						348						4
MSP22_65	2022	4	X	ILFOV	RO	1		271				251					138	3
				Constanta1	RO	1												3
				Tulcea	RO	1		209				241						3
				SILISTRA	BG	1												3
				Calarasi	RO	1						242						1
				Ialomita	RO	1						255						3
				Braila	RO	1						236						3
				SHUMEN	BG	1												3
				Constanta2	RO	1						249						3
				Koprivnecko-Krizevacka	HR	1						222						3
				Juzno Backi	SRB	1						224						4
				Osjecko-Baranjska	HR	1						203						1
				Juzno Banatski	SRB	1						224						3
				Sremski1	SRB	1		L				221						3
				Sremski2	SRB	1		211				220					82	3
				Pomoravski	SRB	1						212						3
				Srednje-Banatski	SRB	1						224						1
				Leon1	ES	1						272						4
				Leon2	ES	1						306						4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife	g Wuchshöhe	Jugendentwicklung	WMTT Wolbenblüte	Gebrochene Pflanzen	Istpflanzenzahl	Stängel- und Kolbenfäule	Blattflecken	Helminthosporium	Gesamteindruck	g Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
	ſ	F	Λ	Rohrau	AT	1	B011.1-9	159	DOII.1-9	1 I IVIIVI	am/P	212		БОП	.1-9		CIII	
								267				220					142	4
				Feldbach	AT	1		197				199					107	
				Deutsch Jahrndorf	AT	1		226				199 244					100	4
				Pyrénées-Atlantiques Landes2	FR FR	1		268				254					119	2
				Landes1	FR	1		298 246				265					111	4
				Charente	FR	1		Z#0				235					111	4
				Charente-Maritime2	FR	1						248						4
				Vendée2	FR	1						242						2
				Charente-Maritime1	FR	1						245					97	4
				Charente-Maritime3	FR	1						242					74	3
				Haut-Rhin1	FR	1						242					/4	3
				Bas-Rhin1	FR	1		272				311						4
				Haut-Rhin2	FR	1		287				311					122	4
				Baranya	HU	1		207				246					142	1
				Tolna	HU	1		214				252					118	1
				Csongrad	HU	1		176				245					82	3
				Ain	FR	1		170				340					02	4
				Isère	FR	1						348						4
MSP22_69	2022	4	X	ILFOV	RO	1		270				248					115	3
				Constanta1	RO	1		2.0				2.0					110	3
				Tulcea	RO	1		184				265						3
				SILISTRA	BG	1		104				200						3
				Calarasi	RO	1						258						1
				Ialomita	RO	1						247						3
				Braila	RO	1						227						3
				SHUMEN	BG	1												3
				Constanta2	RO	1						252						3
				Koprivnecko-Krizevacka	HR	1						215						3
				Juzno Backi	SRB	1						224						4
				Osjecko-Baranjska	HR	1						177						1
				Juzno Banatski	SRB	1						225						3
				Sremski1	SRB	1						217						3
1				Sremski2	SRB	1		206				223					85	3
				Pomoravski	SRB	1						223						3
				Srednje-Banatski	SRB	1						221						1
				Leon1	ES	1						272						4
				Leon2	ES	1						301						4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife Bon.1-9	g Wuchshöhe	Jugendentwicklung Bon.1-9	WMTT Kolbenblüte	Gebrochene Pflanzen	az Istpflanzenzahl	Stängel- und Kolbenfäule	Blattflecken	P-1.	Gesamteindruck	g Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
				Mooskirchen	AT	1		335				241					176	4
				Rohrau	AT	1		176				232						1
				Feldbach	AT	1		307				23 0					161	4
				Deutsch Jahrndorf	AT	1		216				227					115	4
				Tulln	AT	1		190				225						2
				Pyrénées-Atlantiques	FR	1		253				25 8					125	2
				Charente-Maritime2	FR	1						203						4
				Charente-Maritime4	FR	1						271						1
				Vendée1	FR	1						229						2
				Vendée2	FR	1		a . L				261						2
				Freiburg1	DE	1		315				315					146	2
				Côte-d`Or	FR	1		255 277				320						4
				Bas-Rhin1 Haut-Rhin2	FR FR	1		309				335 317					131	4
				Freiburg2	DE	1		326				330					131	4
				Baranya	HU	1		320				254						1
				Tolna	HU	1		228				239					120	1
				Csongrad	HU	1		190				269					93	3
MSP22_73	2022	4	X	Ain	FR	1						340						4
				Isère	FR	1						348						4
				ILFOV	RO	1		266				254					138	3
				Constanta1	RO	1												3
				Tulcea	RO	1		204				266						3
				SILISTRA	BG	1												3
				Calarasi	RO	1						261						1
				Ialomita	RO	1						26 4						3
				Braila	RO	1						25 3						3
				SHUMEN	BG	1												3
				Constanta2	RO	1						25 6						3
				Koprivnecko-Krizevacka	HR	1						229						3
				Juzno Backi	SRB	1						224						4
				Osjecko-Baranjska	HR	1						214 228						3
				Juzno Banatski Sremski2	SRB SRB	1		211				248 224					88	3
				Srednje-Banatski	SRB	1		¥11				224 228					<u> </u> 08	1
				Leon1	ES	1						248 272						4
				Leon2	ES	1						297						4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife	Wuchshöhe	Jugendentwicklung	Kolbenblüte	Gebrochene Pflanzen	Istpflanzenzahl	Stängel- und Kolbenfäule	Blattflecken	Helminthosporium	Gesamteindruck	Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
Ž	Ϋ́	ž	5				Bon.1-9	cm	Bon.1-9	TTMM	ahl/P			Bon	.1-9		cm	
				Wolfsberg	AT	1		268				240						4
				St. Pölten	AT	1		245				209						4
				Mooskirchen	AT	1		329				223					164	4
				Schwertberg	AT	1		294				237						4
				Rohrau	AT	1		174				215						1
				Feldbach	AT	1		289				213					151	4
				Tulln	AT	1		222				239						2
				Sarthe2	FR	1		250				363					115	3
				Pyrénées-Atlantiques	FR	1		237				25 3					106	2
				Maine-et-Loire2	FR	1						188					93	4
				Maine-et-Loire1	FR	1		243				232					132	4
				Charente-Maritime4	FR	1						265						1
				Loir-et-Cher	FR	1						272						4
				Vendée1	FR	1						261						2
MSP22_75	2022	3	X	Loire-Atlantique2	FR	1						247						2
				Vendée2	FR	1						247						2
				Freiburg1	DE	1		335				326					141	2
				Bas-Rhin2	FR	2						340						4
				Côte-d`Or	FR	1						203						4
				Freiburg2	DE	1		305				314						4
				Baranya	HU	1						25 6						1
				Tolna	HU	1		222				246					114	1
				Csongrad	HU	1		192				264					91	3
				Cher	FR	1						239						2
				Ain	FR	1						340						4
				ILFOV	RO	1		265				251					125	3
				Bacau	RO	1						240						1
				Calarasi	RO	1						249						1
				STARA ZAGORA	BG	1												1
				VRATZA	BG	1												2

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife	m Wuchshöhe	9-1.08	WWLL Kolbenblüte	Gebrochene Pflanzen	arzell	Stängel- und Kolbenfäule	Blattflecken	6-1"	Gesamteindruck	g Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
				Rohrau	AT	1		158				221						1
				Feldbach	AT	1		254				222					147	4
				Deutsch Jahrndorf	AT	1		198				218					101	4
				Pyrénées-Atlantiques	FR	1		208				25 0					106	2
				Landes2	FR	1		248				25 0					119	2
				Landes1	FR	1		251				266					104	4
				Charente	FR	1						234						4
				Charente-Maritime2	FR	1						255						4
				Vendée2	FR	1						266						2
				Charente-Maritime1	FR	1						245					82	4
				Charente-Maritime3	FR	1		196				247					70	3
				Haut-Rhin1	FR	1												3
				Bas-Rhin1	FR	1		246				327						4
				Haut-Rhin2	FR	1		266				325					127	4
				Baranya	HU	1						25 8						1
				Tolna	HU	1		206				244					96	1
				Csongrad	HU	1		170				262					69	3
				Ain	FR	1						340						4
MSP22_76	2022	4	X	Isère	FR	1						348						4
14151 22_76	2022	_	1	ILFOV	RO	1		247				251					118	3
				Constanta1	RO	1												3
				Tulcea	RO	1		193				2 66						3
				SILISTRA	BG	1												3
				Calarasi	RO	1						2 62						1
				Ialomita	RO	1						273						3
				Braila	RO	1						25 2						3
				SHUMEN	BG	1						0.40						3
				Constanta2	RO	1						249						3
				Koprivnecko-Krizevacka	HR	1						217						3
				Juzno Backi	SRB	1						218						4
				Osjecko-Baranjska	HR	1						201 222						1
				Juzno Banatski	SRB	1						222 224						3
				Sremski 1 Sremski 2	SRB SRB	1		179				224					69	3
				Pomoravski	SRB	1		1/9				223					09	3
				Srednje-Banatski	SRB	1						226						1
				Leon1	ES	1						272						4
				Leon2	ES	1						313						4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife	Wuchshöhe	Jugendentwicklung	Kolbenblüte	Gebrochene Pflanzen	Istpflanzenzahl	Stängel- und Kolbenfäule	Blattflecken	Helminthosporium	Gesamteindruck	Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
Z	ř	R	*				Bon.1-9	cm	Bon.1-9	TTMM	ahl/P			Bon	.1-9		cm	
				Wolfsberg	AT	1		254				231						4
				St. Pölten Mooskirchen	AT	1		239 329				215 225					179	4
				Schwertberg	AT AT	1		329 286				243 191					179	4
				Rohrau	AT	1		175				226						1
				Feldbach	AT	1		281				214					166	4
				Tulln	AT	2		210				228					100	2
				Sarthe2	FR	1		250				342					136	3
				Pyrénées-Atlantiques	FR	1		238				250					105	2
				Maine-et-Loire2	FR	1		200				175					99	4
				Maine-et-Loire1	FR	1		235				262					130	4
				Charente-Maritime4	FR	1						254						1
				Loir-et-Cher	FR	1						255						4
				Vendée1	FR	1												2
1.5GD22	2022	_	**	Loire-Atlantique2	FR	1						259 257						2
MSP22_77	2022	3	X	Vendée2	FR	1						25 0						2
				Freiburg1	DE	1		307				306					132	2
				Bas-Rhin2	FR	2						340						4
				Côte-d`Or	FR	1		250				318						4
				Freiburg2	DE	1		291				305						4
				Baranya	HU	1						242						1
				Tolna	HU	1		229				244					112	1
				Csongrad	HU	1		186				2 61					96	3
				Cher	FR	1						24 2						2
				Ain	FR	1						340						4
1				ILFOV	RO	1		260				24 3					128	3
				Bacau	RO	1						24 0						1
				Calarasi	RO	1						233						1
				STARA ZAGORA	BG	1												1
				VRATZA	BG	1												2

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Bontapreife	m Wuchshöhe	Jugendentwicklung Bon.1-9	MMTT Molbenblüte	Algebrochene Pflanzen	arzell	Stängel- und Kolbenfäule	Blattflecken	Helminthosporium	Gesamteindruck	g Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
	 			Wolfsberg	AT	1	Boil.1 >	244	Bon.i y	111/11/1	ttiii/ I	238		Boi			CIII	4
				St. Pölten	AT	1		230				211						4
				Mooskirchen	AT	1		323				229					161	4
				Schwertberg Rohrau	AT AT	1		277 168				236 224						4
				Feldbach	AT	1		287				227					170	4
				Tulln	AT	1		211				232						2
				Sarthe2	FR	1		255				366					134	3
				Pyrénées-Atlantiques	FR	1		233				249					115	2
				Maine-et-Loire2 Maine-et-Loire1	FR	1		233				227 258					87 125	4
				Charente-Maritime4	FR FR	1		433				267					143	1
				Loir-et-Cher	FR	1						274						4
				Vendée1	FR	1						231						2
MSP22_78	2022	3	X	Loire-Atlantique2	FR	1						252						2
				Vendée2	FR	1		305				269 320					126	2
				Freiburg1 Bas-Rhin2	DE FR	2		300				340					<u>13</u> 6	2
				Côte-d'Or	FR	1						186						4
				Freiburg2	DE	1		303				315						4
				Baranya	HU	1						25 3						1
				Tolna	HU	1		213				25 5					110	1
				Csongrad Cher	HU FR	1		189				268245					95	3 2
				Ain	FR	1						340						4
				ILFOV	RO	1		260				249					135	3
				Bacau	RO	1						240						1
				Calarasi STARA ZAGORA	RO BG	1						265						1
				VRATZA	BG	1												2
				Wolfsberg	AT	1		240				239						4
				St. Pölten	AT	1		220				213						4
				Mooskirchen	AT	1		307				225					159	4
				Schwertberg	AT AT	2		249 167				227215						4
				Rohrau Feldbach	AT	1		270				221					155	4
				Tulln	AT	1		194				230					100	2
				Sarthe2	FR	1		238				351					116	3
				Pyrénées-Atlantiques	FR	1		206				239					97	2
				Maine-et-Loire2 Maine-et-Loire1	FR FR	1		219				178 259					76 120	4
				Charente-Maritime4	FR	1		419				259 259					140	1
				Loir-et-Cher	FR	1						257						4
				Vendée1	FR	1						215						2
MSP22_83	2022	3	X	Loire-Atlantique2	FR	1						265						2
				Vendée2	FR	1		291				25 ₀					126	2
				Freiburg1 Bas-Rhin2	DE FR	2		291				340					146	4
				Côte-d'Or	FR	1		228				318						4
				Freiburg2	DE	1		303				309						4
				Baranya	HU	1						251						1
				Tolna	HU	1		212				247					109	1
				Csongrad Cher	HU FR	1		170				263238					82	2
				Ain	FR	1						340						4
				ILFOV	RO	1		239				240					130	3
				Bacau	RO	1						24 0						1
				Calarasi	RO	1						24 3						1
1				STARA ZAGORA VRATZA	BG BG	1												2

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Blattabreife	m Wuchshöhe	Bon.1-9	MMTT Kolbenblüte	Gebrochene Pflanzen	Istpflanzenzahl	Stängel- und Kolbenfäule	Blattflecken	Helminthosporium	Gesamteindruck	g Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
	-		_	Mooskirchen	AT	1		332				224					173	4
				Rohrau	AT	1		174				216						1
				Feldbach	AT	1		2 93				217					165	4
				Deutsch Jahrndorf	AT	1		207				215					100	4
				Tulln	AT	1		200				231						2
				Pyrénées-Atlantiques	FR	1		246				249					114	2
				Charente-Maritime2	FR	1						215						4
				Charente-Maritime4	FR	1						259						1
				Vendée1	FR	1						249 258						2
				Vendée2 Freiburg1	FR DE	1		319				316					136	2 2
				Côte-d'Or	FR	1		255				330					130	4
				Bas-Rhin1	FR	1		276				337						4
				Haut-Rhin2	FR	1		327				314					130	4
				Freiburg2	DE	1		316				314						4
				Baranya	HU	1						248						1
				Tolna	HU	1		232				241					110	1
				Csongrad	HU	1		192				259					95	3
MSP22_85	2022	4	X	Ain	FR	1						340						4
				Isère	FR	1						348						4
				ILFOV	RO	1		254				233					123	3
				Constanta1	RO	1		Ti oo				071						3
				Tulcea SILISTRA	RO BG	1		199				271						3
				Calarasi	RO	1						241						1
				Ialomita	RO	1						261						3
				Braila	RO	1						245						3
				SHUMEN	BG	1												3
				Constanta2	RO	1						257						3
				Koprivnecko-Krizevacka	HR	1						219						3
				Juzno Backi	SRB	1						220						4
				Osjecko-Baranjska	HR	1						209						1
				Juzno Banatski	SRB	1						226						3
				Sremski2	SRB	1		209				222					71	3
				Srednje-Banatski	SRB	1						221						1
				Leon1	ES	1						272						4
				Leon2	ES	1						299						4

Name	Jahr	Reifegruppe	WP	Standort	Land	Parzellenanzahl	Bon.1-9	g Wuchshöhe	Jugendentwicklung Bon.1-9	MMTT Kolbenblüte	Gebrochene Pflanzen	Istpflanzenzahl	Stängel- und Kolbenfäule	Blattflecken	Helminthosporium	Gesamteindruck	Kolbenansatzhöhe	Intensität des Trockenstresses für die Kultur
	J	R	Λ	Rohrau	AT	1	B011.1-9	177	B011.1-9	1 I IVIIVI	am/P	232		DOI	1.1-9		cm	1
				Feldbach	AT	1		289				235					164	4
				Deutsch Jahrndorf	AT	1		220				215					121	4
				Pyrénées-Atlantiques	FR	1		241				246					125	2
				Landes2	FR	1		275				254					139	2
				Landes1	FR	1						263					121	4
				Charente	FR	1						25 0						4
				Charente-Maritime2	FR	1						25 ₆						4
				Vendée2	FR	1						263						2
				Charente-Maritime1	FR	1		220				239					97	4
				Charente-Maritime3	FR	1		228				237					85	3
				Haut-Rhin1	FR	1		20				,					0.5	3
				Bas-Rhin1	FR	1		277				314						4
				Haut-Rhin2	FR	1		321				316					132	4
				Baranya	HU	1						226						1
				Tolna	HU	1		230				247					118	1
				Csongrad	HU	1		190				266					85	3
				Ain	FR	1		170				340					05	4
				Isère	FR	1						348						4
MSP22_108	2022	4	X	ILFOV	RO	1		271				250					125	3
				Constanta1	RO	1		2,1				250					143	3
				Tulcea	RO	1		205				25 6						3
				SILISTRA	BG	1		203				230						3
				Calarasi	RO	1		<u> </u>				245						1
				Ialomita	RO	1						248						3
				Braila	RO	1						245						3
				SHUMEN	BG	1						243						3
				Constanta2	RO	1						259						3
					HR	1						216						3
				Koprivnecko-Krizevacka	SRB							224						4
				Juzno Backi		1		-				214						
				Osjecko-Baranjska	HR SRB	1		-				224						1
				Juzno Banatski Sremski 1	SRB	1		-				224						3
				Sremski2	SRB	1		191				224					69	3
				Pomoravski	SRB	1		191				223					09	3
				Srednje-Banatski	SRB	1						226						1
				Leon1	ES	1						272						4
				Leon2	ES	1		<u> </u>				308						4
				Boly	HU	2	 	 		0. Jan.		64						1
				Brux	FR	2				0. Jan.		04						1
					RO	2	-			0. Jan. 0. Jan.		49						1
MSP22_435	2022	3	X	Dalga Ilz2	AT	2	6.5	325	3.0	0. Jan. 0. Jan.		64	1.0		3.0	2.5	154	2
					RO	2	0.5	323	<u> </u>	0. Jan.		52	1.0		5.0	L.J	133	1
				Lovrin Tulln2	AT	2	5.5	240	4.0	0. Jan. 0. Jan.		61	2.5			3.5	110	1
							5.5	<u>Z</u> 40	# .U				4.3			μ.3	110	
				Boly	HU	2	-	-		0. Jan.		65						1
				Brux	FR	2				0. Jan.		57						1
MSP22_449	2022	3	X	Dalga	RO	2	4.5	224	2.5	0. Jan.		57	1.0		1.0	12 A	1.00	1
				Ilz2	AT	2	4.5	330	2.5	0. Jan.		69	1.0		1.0	3.0	165	2
				Lovrin	RO	2		2-0	4.0	0. Jan.		49	L		-		160	1
				Tulln2	AT	2	7.0	260	4.0	0. Jan.		67	4.5			4.5	120	1

3.2 ÖL- UND EIWEIßPFLANZEN

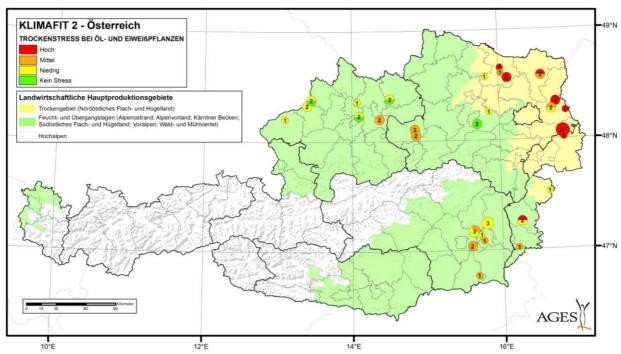


Abbildung 27: Verteilung der einzelnen Versuchsstandorte des zweiten Projektjahres (2022) und der dazugehörigen Trockenstress-Intensität der Standorte an denen Öl- & Eiweißpflanzen angebaut wurden. Eine höhere Auflösung der Karte findet sich im Anhang.

3.2.1 SOJABOHNE

Die Sojabohne konnte sich als Kulturart in den vergangenen Jahren etablieren und ist heutzutage von den österreichischen Äckern nicht mehr wegzudenken. Dabei nimmt die angebaute Fläche seit Jahren beständig zu. Mit an die 92.000 angebauten Hektar wurde in 2022 ein neuer Rekord aufgestellt. Neben dem guten Wachstum auch bei hohen Temperaturen ist die Sojabohne insbesondere aufgrund ihrer Fähigkeit zur Stickstofffixierung gerade in Zeiten von hohen Düngemittelpreisen sehr gefragt. Die Prognosen für die nächsten Jahre, auch aufgrund des zunehmend wärmeren Klimas, gehen von einer weiteren Steigerung der Anbaufläche aus. Dabei werden die Sojasorten hinsichtlich ihrer Reifegruppen unterschieden, welche von extrem / sehr frühreif ("000/000") über frühreif "00" bis hin zur mittelspäten Reifegruppe "0" angeboten werden. In Österreich sind die Reifegruppen 00 und 000 dominant vertreten. Sortenversuche haben gezeigt, dass die Sorten der Reifegruppe 00 besonders für den pannonischen Raum geeignet sind, während man in den Grenzlagen des Sojaanbaues zu sehr frühreiferen Sorten (Reifegruppe 000 und 0000) greifen sollte. Die Reifegruppe 0 ist in Österreich nur für Gunstlagen geeignet. Prinzipiell ist die Sojabohne eine Kulturart, welche ein feuchtwarmes Klima bevorzugt, weswegen sich die charakteristischen Anbaugegenden in Österreich im Burgenland und in den warmen Lagen Niederösterreichs und Oberösterreichs befinden. Frühreife Sorten können dabei aber auch in günstigen Lagen im Westen Niederösterreichs sowie im oberösterreichischen Zentralraum angebaut werden. Das frühe Abreifen der Kultur geht aufgrund der kürzeren Vegetationszeit mit dementsprechend niedrigeren Erträgen einher. Charakteristisch für die Sojabohne ist zudem, dass eine mangelhafte Wasserversorgung beim Anbau zum ertragsbegrenzenden Faktor wird. Weitere wichtige Selektionsmerkmale für den Anbau sind bei der Züchtung aber auch bei der Sortenwahl der Rohproteingehalt (insbesondere für die tierische Verfütterung), Wuchshöhe und die Neigung zur Lagerung. Bei Sojasorten für die menschliche Ernährung sind dann wiederum die Nabelfarbe und die Tofu-Eignung von großem Interesse. Gute Standfestigkeit ist insbesondere in niederschlagsreicheren Anbaulagen von Bedeutung. Eine kurze Wuchshöhe wirkt sich positiv auf die Standfestigkeit der Pflanze aus, allerdings scheinen kurzwüchsige Sojasorten auf Trockenstress mit niedrigem Ertrag zu reagieren. Wichtig ist auch hier, dass die Hülsenansätze hoch genug sein müssen, damit bei der Ernte keine Bohnen verloren gehen (siehe auch 3.4).

Aufgrund der steigenden Bedeutung der Sojabohne für den österreichischen Ackerbau ist diese Kulturart ein großer Bestandteil des Projektes KLIMAFIT 2, die Anzahl der Versuche konnte gegenüber 2021 noch einmal ausgeweitet werden. Wurden im ersten Projektjahr noch an 45 Standorten 123 Versuche angelegt, so erhöhte sich diese Anzahl in 2022 auf 48 Standorten und 137 Versuche. Davon befanden sich 27 Standorte (zwei neue Standorte kamen also innerhalb Österreichs dazu) im Inland, die restlichen 21 Standorte verteilten sich auf Deutschland, Frankreich, Ungarn, Italien, Polen und Tschechien. Die in die Versuche gestellten Sojabohnen litten im zurückliegenden Projektjahr durchaus unter Trockenstress. 30 der 48 Standorte, sowie 62,8 % aller Versuche – also mehr als die Hälfte – wurden von den Züchter:innen mit hoher (Stufe 1) oder mittlerer (Stufe 2) Trockenstress-Intensität bewertet. Eine niedrige Trockenstressintensität (Stufe 3), die auf die angebauten Pflanzen einwirkte, trat bei weiteren 39 Versuchen (28,5 %) auf. Kein Trockenstress wurde bei 12 Versuchen (8,76 %) vermeldet. Die herausfordernden Bedingungen ermöglichten eine Selektion hinsichtlich der Stresstoleranz und Robustheit von Sortenkandidaten, aber auch eine gute Selektion hinsichtlich Trockenheitstoleranz. Hervorstechend war auch eine zum Teil genotypspezifische Notreife und Blattwelke durch Trockenheit. Das Ertragsniveau aller Standorte lag trotz des zum Teil starken Trockenstresses auf einem guten bis sehr guten Niveau. Das zeigt die Widerstandskraft und das Potential und der Kulturart Sojabohne, auch unter herausfordernden Bedingungen annehmbare Kornerträge zu erzielen. Auch hinsichtlich Klimawandel-bedingter vermehrt auftretender Schädlinge sowie Krankheiten wurden Bonituren durchgeführt. Es wurden genotypspezifische Unterschiede in der Toleranz gegenüber Diaporthe beobachtet. Kornausfall und eine verzögerte Blattabreife traten im Jahr 2022 nur untergeordnet auf. Es konnten auf fast allen Standorten aussagekräftige Ergebnisse erzielt werden.

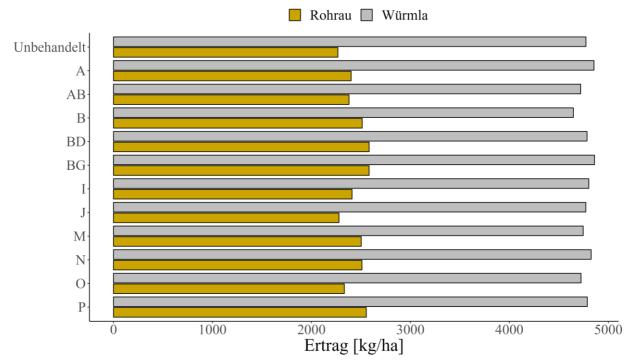


Abbildung 28: Ertrag der Sojabohnensorte Achillea (Reifegruppe 000) an zwei verschiedenen Standorten nach Behandlung mit in Österreich marktbedeutenden Beimpfungspräparaten unterschiedlicher Preisklassen.

Wie schon in 2021 wurden auch im zweiten Projektjahr bei der Sojabohne zwei Exaktversuche im Raum Niederösterreich (Würmla und Rohrau) mit jeweils 12 verschiedenen Beimpfungsvarianten (in vierfacher Wiederholung; 48 Kleinparzellen pro Standort) angelegt. Ziel war die Überprüfung der Wirksamkeit einzelner unterschiedlicher Beimpfungspräparate alleine und in Kombination mit unterschiedlichen pflanzenstärkenden Betriebsmitteln. Bei allen drei Versuchen wurden die Sorte *Achillea* (Reifegruppe 000) verwendet. Während des Vegetationsverlaufes erforderte die Kultur eine intensive Bestandesführung (mehrere Durchgänge händischer Unkrautbekämpfung und parzellenspezifische Ausbringung einzelner Betriebsmittel zu unterschiedlichen Entwicklungsstadien). Neben der optischen Beurteilung der oberirdischen Biomasse wurde

das Hauptaugenmerk auf die Ausbildung einer möglichst hohen Dichte an Rhizobien gelegt. Die Bonitur der Rhizobien erfolgte in aufwendiger Handarbeit. Die Ernte erfolgte mit einem Kleinparzellenmähdrescher. Im Anschluss erfolgte die Qualitäts- und Ertragsauswertung. Hier zeigte sich, dass manche Beimpfungsmittel in Kombination mit bestimmten pflanzenstärkenden Mitteln sowohl positive als auch negative Korrelationen brachten (Abbildung 28). Dabei waren die Wirksamkeit und der Ertrag der Sorte in erster Linie abhängig vom Standort, aber auch von dem verwendeten Präparat. Aufgrund des Datenschutzes sind die verschiedenen Präparate in der Abbildung anonymisiert. Die erzielten Ergebnisse geben interessante Einblicke über das Nutzen einer Saatgutvorbehandlung, sind aber in jedem Fall durch mehrjährige Versuche zu verifizieren.

Tabelle 41: Ausgewählte erhobene Parameter der Sojabohnen Sorte *Achillea* (Reifegruppe 000) nach Behandlung mit in Österreich marktbedeutenden Beimpfungspräparaten unterschiedlicher Preisklassen im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten.

Name	Jahr	Reifegruppe	Standort	Land	Parzellenanzahl	By Kornertrag (13% Restfeuchtigkeit)	% Erntefeuchte	% Rohproteingehalt	Intensität des Trockenstresses für die Kultur
			Rohrau	AT	4	2401	14.15	37 .13	1
A	2022	000	Würmla	AT	4	4855	16.89	41.71	3
AB	2022	000	Rohrau	AT	4	2380	14.00	<u>36</u> .87	1
AD	2022	000	Würmla	AT	4	4721	16.50	41.89	3
В	2022	000	Rohrau	AT	4	2513	14.48	38.08	1
В	2022	000	Würmla	AT	4	4647	16.85	41.78	3
BD	2022	000	Rohrau	AT	4	2583	14.10	<u>37.</u> 61	1
	2022	000	Würmla	AT	4	4785	17.28	41.96	3
BG	2022	000	Rohrau	AT	4	2583	13.78	<u>36</u> .68	1
	2022	000	Würmla	AT	4	4861	16.95	41.78	3
I	2022	000	Rohrau	AT	4	2411	14.03	3 4.33	1
_			Würmla	AT	4	4803	16.70	41.93	3
J	2022	000	Rohrau	AT	4	2279	13.50	3 5.47	1
			Würmla	AT	4	4773	16.53	41.09	3
M	2022	000	Rohrau	AT	4	2503	14.18	<u>37.</u> 61	1
			Würmla	AT	4	4746	16.73	41.91	3
N	2022	000	Rohrau	AT	4	2511	14.17	37 40	1
			Würmla	AT	4	4827	16.63	41.89	3
O	2022	000	Rohrau	AT	4	2332	13.35	32.29	1
			Würmla	AT	4		16.50	41.26	3
P	2022	000	Rohrau	AT	4	2555	14.20	38.08	1
			Würmla	AT	4	4788	16.88	41.85	3
Unbehandelt	2022	000	Rohrau	AT	4		13.73	36.14	1
			Würmla	AT	4	4774	16.60	41.45	3

3.2.1.1 Sojabohne mittelspät (Reifegruppe I und 0)

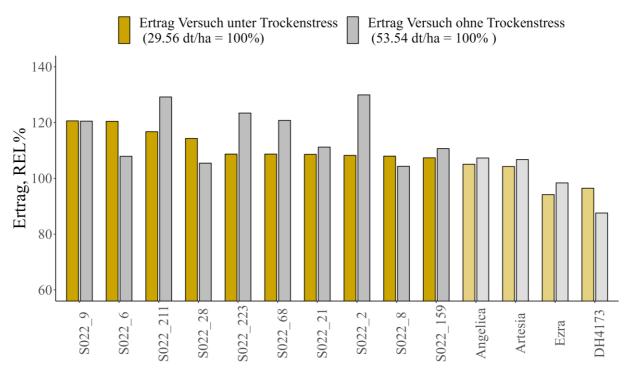


Abbildung 29: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten Zuchtlinien der Sojabohne der Reifegruppe I und 0 und der Standardsorten *Angelica*, *Artesia*, *Ezra* und *DH4173*.

Bei den angelegten Sojabohnen-Versuchen der Reifegruppe I und 0 stachen auch in 2022 einige vielversprechende Zuchtlinien hervor, welche gegenüber der mitangebauten Standardsorten *Angelica, Artesia, Ezra* und *DH4173* mit guten Erträgen, sowohl in trockengestressten Versuchen als auch in Versuchen ohne ausgeprägtem Trockenstress, überzeugen konnten (Abbildung 29). Wie einleitend bereits erwähnt, werden neben einem guten Erträg auch noch weitere Qualitätsparameter in der Züchtung verfolgt. Die bei Zuchtlinien der Reifegruppe I und 0 bonitierten Parameter im Feld und die erhobenen Qualitäten sind nachfolgend in Tabelle 42 und Tabelle 43 abgebildet. Im vergangenen Projektjahr wurden 7 Zuchtlinien dieser Reifegruppen zur Wertprüfung angemeldet.

Tabelle 42: Ausgewählte erhobene Parameter vielversprechender Sojabohne-Zuchtlinien der Reifegruppe I und 0 im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf der nächsten Seite.

Name	Jahr	WP	Reifegruppe	Standort	Land	Parzellenanzahl	The Kornertrag (13% Restfeuchtigkeit)	% Erntefeuchte	markorngewicht ⊠	% Rohproteingehalt	% Ölgehalt	Intensität des Trockenstresses für die Kultur
				Hollabrunn	AT	2	38.8	3.8				1
S022_2	2022		0	Obersiebenbrunn	AT	2	56.6	14.3				3
				Pecs	HU	3	12.7	16.2				1
				Hollabrunn	AT	2	42.9	15.0				1
S022_6	2022		0	Obersiebenbrunn	AT	2	44.8	14.4				3
				Pecs	HU	3	15.8	17.2				1
				Hollabrunn	AT	2	37.9	14.9				1
S022_8	2022		0	Obersiebenbrunn	AT	2	42.9	14.4				3
				Pecs	HU	3	13.5	16.5				1
				Hollabrunn	AT	2	44.3	12.9				1
S022_9	2022		0	Obersiebenbrunn	AT	2	51.6	13.6				3
				Pecs	HU	3	14.5	17.6				1
				Hollabrunn	AT	2	35.8	13.1				1
S022_21	2022		0	Obersiebenbrunn	AT	2	46.6	13.6				3
				Pecs	HU	3	15.9	17.2				1
				Hollabrunn	AT	2	41.3	28.0				1
S022_28	2022		0	Obersiebenbrunn	AT	2	43.5	22.4				3
				Pecs	HU	3	13.8	19.3				1
5022 68	2022		0	Marchtrenk	AT	1	59.2	19.2				4
S022_68	2022		U	Weikendorf	AT	1	25.3	18.2				1
S022 159	2022		0	Marchtrenk	AT	1	53.8	16.7				4
8022_139	2022		U	Weikendorf	AT	1	24.9	15.7				1
S022_211	2022		0	Marchtrenk	AT	1	63.7	28.8				4
3022_211	2022		U	Weikendorf	AT	1	27.6	23.6				1
S022_223	2022		0	Marchtrenk	AT	1	60.6	17.5				4
3022_223	2022		U	Weikendorf	AT	1	25.3	15.2				1
				Rohrau	AT	2	30.4	12.4				1
S022_323	2022	X	0	Weikendorf	AT	2	24.6	13.9	166.0	46.1	21.3	1
				Boly	HU	2	19.1	8.5				1
				Rohrau	AT	2	28.5	13.4				1
S022_325	2022	X	0	Weikendorf	AT	2	23.1	13.6	152.5	44.5	22.4	1
				Boly	HU	2	21.1	9.2				1

Name	Jahr	WP	Reifegruppe	Standort	Land	Parzellenanzahl	Kornertrag (13% Restfeuchtigkeit)	% Erntefeuchte	Tausendkorngewicht	% Rohproteingehalt	% Ölgehalt	Intensität des Trockenstresses für die Kultur
				Rohrau	AT	2	31.5	13.0				1
S022_326	2022	X	0	Weikendorf	AT	2	_	15.3	148.0	46.2	20.6	1
				Boly	HU	2	22.4	9.0				1
S022_335	2022	X	0	Gleisdorf (Wünschendorfacker)	AT	2	47.6	18.8	233.5			2
S022_340	2022	X	0	Gleisdorf (Wünschendorfacker)	AT	2	50.5	20.5	210.8			2
S022_343	2022	X	0	Gleisdorf (Wünschendorfacker)	AT	2	53.0	21.2	222.3			2
S022_353	2022	X	0	Gleisdorf (Wünschendorfacker)	AT	2	49.6	21.6	174.9			2

Tabelle 43: Ausgewählte bonitierte Parameter vielversprechender Sojabohne-Zuchtlinien der Reifegruppe I und 0 im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt.

Name	Jahr	WP	Reifegruppe	Standort	Land	Parzellenanzahl	9 Jugendentwicklung	m Wuchshöhe	Hülsenansatzhöhe	Blattabreife	Reifebonitur Datum 1	Reifebonitur Datum 2	Gesamteindruck	Lagerung 1 (BBCH 70-75)	Lagerung 2 (vor Ernte)	Mängel nach Aufgang	Peronospora	Diaporthe	□ Tage bis Reife	Intensität des Trockenstresses für die Kultur
				Hollabrunn	AT	2	4.0	118			9.0	8.0				1.0		2.0	280	1
S022_2	2022		0	Obersiebenbrunn	AT	2	4.0	115				8.0			4.5	2.0			272	3
				Pecs	HU	3		87	9.3					1.0					253	1
				Hollabrunn	AT	2	4.0	110			9.0	6.0				3.0		2.0	275	1
S022_6	2022		0	Obersiebenbrunn	AT	2	4.0	103				6.5			1.0	2.0			266	3
				Pecs	HU	3		82	8.0					1.0					241	1
				Hollabrunn	AT	2	4.0	110			9.0	6.5				2.0		2.0	276	1
S022_8	2022		0	Obersiebenbrunn	AT	2	3.0	108				8.0			5. 0	1.5			272	3
				Pecs	HU	3		85	10.7					1.0					250	1
				Hollabrunn	AT	2	4.0	105			9.0	7.5				2.0		3.0	278	1
S022_9	2022		0	Obersiebenbrunn	AT	2	4.0	108				7.0			5.0	2.5			268	3
				Pecs	HU	3		83	9.3					1.7					241	1
				Hollabrunn	AT	2	4.0	113			9.0	7.0				1.5		1.0	277	1
S022_21	2022		0	Obersiebenbrunn	AT	2	4.0	118				7.5			3.0	3.5			270	3
				Pecs	HU	3		80	10.7					1.0					248	1
				Hollabrunn	AT	2	5.0	110			9.0	8.0				1.0		4.0	280	1
S022_28	2022		0	Obersiebenbrunn	AT	2	4.0	113				7.5			4.0	1.5			270	3
				Pecs	HU	3		82	11.3					1.0					248	1
S022_68	2022		0	Marchtrenk	AT	1		100		9	9.0	9.0		4.0	8.0	4.0			277	4
	-			Weikendorf	AT	1				6	9.0	3.0				4.0				1
S022_159	2022		0	Marchtrenk	AT	1		105		9	9.0	8.0		5.0	7.0	4.0			275	4
				Weikendorf	AT	1		1		6	9.0	2.0				5.0				1
S022_211	2022		0	Marchtrenk	AT	1		100		9	9.0	9.0		1.0	8.0	4.0			277	4
				Weikendorf	AT	1		100		8	9.0	6.0		4.0	0.0	6.0			271	1
S022_223	2022		0	Marchtrenk	AT	1		100		7	6.0	5.0		4.0	8.0	5.0			271	4
				Weikendorf	AT	1		-b		4	6.0	1.0				5.0				1
S022_323	2022	X	0	Rohrau	AT	2		68		4	7.5 7.5					2.0				1
8022_323	2022	Λ	0	Weikendorf	AT	2				4	5.0				1.0	1.0			240	1
				Boly	HU AT	2		63			2.5				1.0	1.0			240	1
S022 325	2022	X	0	Rohrau Weikendorf	AT	2		03		4	6.5					2.5				1
3022_323	2022	Λ	U	Boly	HU	2				-	3.5				1.0				243	1
				Rohrau	AT	2		73			7.5				1.0	1.0			273	1
S022_326	2022	X	0	Weikendorf	AT	2				6	8.5					2.5				1
3022_320	2022	41		Boly	HU	2					6.0				1.0	_			250	1
				Gleisdorf												Г			230	
S022_335	2022	X	0	(Wünschendorfacker)	AT	2	2.5	108			7.0	3.0	2.1	3.7	4.5	1.5	2.0	2.5		2
S022_340	2022	X	0	Gleisdorf (Wünschendorfacker)	AT	2	2.2	128			7.3	2.5	3.1	3.4	3.8	1.5	3.8	3.5		2
S022_343	2022	X	0	Gleisdorf (Wünschendorfacker)	AT	2	1.4	118			6.0	2.5	4.0	3.1	3.5	1.5	3.9	4.0		2
S022_353	2022	X	0	Gleisdorf (Wünschendorfacker)	AT	2	3.4	103			5.8	1.5	5.1	3.8	5.5	1.8	1.7	3.0		2

3.2.1.2 Sojabohne mittelfrüh (Reifegruppe 00)

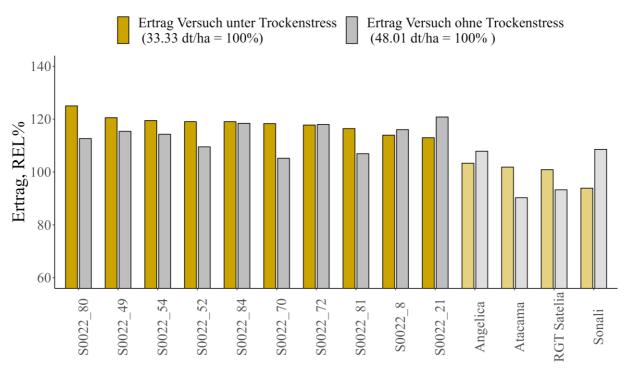


Abbildung 30: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter niedrigem Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten Zuchtlinien der Sojabohne der Reifegruppe 00 und der Standardsorten *Angelica*, *Atacama*, *RGT Satelia* und *Sonali*.

Sojabohnensorten der Reifegruppe 00 sind im Allgemeinen nicht so sehr auf Gunstlagen angewiesen wie die der Reifegruppe 0, weswegen diese Sorten für den Ackerbau in Österreich attraktiver sind und in größerem Ausmaß angebaut werden. In den im vergangenen Projektjahr 2022 angelegten Parzellenversuchen stachen einige Zuchtlinien gegenüber den mit angebauten Standardsorten *Angelica*, *Atacama*, *RGT Satelia* und *Sonali* hervor. Die in die Versuche gestellten Zuchtlinien wurden ebenfalls hinsichtlich wichtiger pflanzenbaulicher Parameter wie Reife, Lagerung, Proteingehalt, Ölgehalt, Erntefeuchte, Wuchshöhe und Tausendkornmasse bonitiert und ausgewertet (Tabelle 44 und Tabelle 45). Insgesamt konnten 11 Zuchtlinien der Reifegruppe 00 in die Wertprüfung gestellt werden.

Tabelle 44: Ausgewählte erhobene Parameter vielversprechender Sojabohne-Zuchtlinien der Reifegruppe 00 im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf den nächsten Seiten.

Name	Jahr	WP	Reifegruppe	Standort	Land	Parzellenanzahl	Expression (13%) Restfeuchtigkeit)	% Erntefeuchte	m Tausendkorngewicht	Rohproteingehalt	Ölgehalt	Intensität des Trockenstresses für die Kultur
				Gießhübl	AT	2	38.07	18				2
S0022_1	2022	X	00	Gleisdorf	AT	2	40.89	7				3
				Hollabrunn	AT	2	26.12	13				1
				Gießhübl	AT	2	3 3.35	19		40	20.3	2
S0022_2	2022	X	00	Gleisdorf	AT	2	48.47	15		40.6	21.4	3
				Hollabrunn	AT	2	30.69	13		38	21.7	1
S0022_3	2022	X	00	Gießhübl	AT	2	37.46	17.1				2
80022_3	2022	Λ	00	Gleisdorf	AT	2	48.62	16.9				3
50022 8	2022		00	Gießhübl	AT	2	41.82	16.9				2
S0022_8	2022		00	Gleisdorf	AT	2	54.67	15.7				3
50022 21	2022		00	Gießhübl	AT	2		16.0				2
S0022_21	2022		00	Gleisdorf	AT	2	5 6.96	15.2				3
				Gießhübl	AT	2	33.15	18.0		38 .70	20.80	2
S0022_44	2022	X	00	Gleisdorf	AT	2	45 .75	17.2		40. 40	21.30	3
				St. Florian	AT	2	34.82	16.2		41.00	20.90	2
				Gießhübl	AT	2	3 9.12	19.4				2
S0022_49	2022		00	Gleisdorf	AT	2	54.36	1 7.1		39 .30	2 1.40	3
				Hollabrunn	AT	2	38.83	15.4		35.90	22 .10	1
				Gießhübl	AT	2	39 .63	17 .9		40. 00	20.60	2
S0022_52	2022		00	Gleisdorf	AT	2	51.54	14.2		39 .70	2 1.50	3
				Hollabrunn	AT	2	37.32	12.4		3 7.90	21.80	1
				Gießhübl	AT	2	3 9.16	18.4				2
S0022_54	2022		00	Gleisdorf	AT	2	53.83					3
				Hollabrunn	AT	2	38.06					1
				Gießhübl	AT	2	44. 64					2
S0022_70	2022		00	Gleisdorf	AT	2	4 9.47					3
				Hollabrunn	AT	2	31.81					1
				Gießhübl	AT	2	45. 67					2
S0022_72	2022		00	Gleisdorf	AT	2	5 5.60					3
				Hollabrunn	AT	2	30.43	_				1
				Gießhübl	AT	2	46. 81	_				2
S0022_80	2022		00	Gleisdorf	AT	2	53.04					3
				Hollabrunn	AT	2	3 4.11					1
				Gießhübl	AT	2	41.78					2
S0022_81	2022		00	Gleisdorf	AT	2	5 0.30					3
				Hollabrunn	AT	2	33.42					1
				Gießhübl	AT	2	52.7 0					2
S0022_84	2022		00	Gleisdorf	AT	2	55.82					3
				Hollabrunn	AT	2	24.24	18.6				1

Name	Jahr	WP	Reifegruppe	Standort	Land	Parzellenanzahl	Pd/pp Kornertrag (13% Restfeuchtigkeit)	% Erntefeuchte	(National Parameter Tausendkorngewicht	Rohproteingehalt	Ölgehalt	Intensität des Trockenstresses für die Kultur
				Rohrau	AT	2	30.50	11.0				1
				Marchtrenk	AT	2	61.17	24.8		43.25		4
S0022_129	2022	X	00	Reichersberg	AT	2	54.84	17.3		-		3
				Weikendorf	AT				166.0	42 .70	23.30	1
				Dijon	FR	2	33.22	12.5				2
S0022_731	2022	X	00	Gleisdorf								
50022_761	2022		00	(Wünschendorfacker)	AT	2	44.73	16.2	187.5	<mark>39</mark> .64	21 .40	2
S0022_733	2022	X	00	Gleisdorf								
2002200		4.5	00	(Wünschendorfacker)	AT	2	46.48	1 5.6	196.6	<mark>38</mark> .77	22 .04	2
S0022_738	2022	X	00	Gleisdorf								
50022_750	2022	41	00	(Wünschendorfacker)	AT	2	47.99	1 5.7	216.0	<mark>39.</mark> 97	20.20	2
S0022_890	2022	X	00	Gleisdorf								
	2022	41	00	(Wünschendorfacker)	AT	2	49.2 0	1 4.7				2
S0022_892	2022	X	00	Gleisdorf								
	2022	41	00	(Wünschendorfacker)	AT	2	48.98	15.3				2
S0022_907	2022	X	00	Gleisdorf		_						
20022_207				(Wünschendorfacker)	AT	2	54.23	16.8	182.4	<u>3</u> 7.97	23.97	2

Tabelle 45: Ausgewählte bonitierte Parameter vielversprechender Sojabohne-Zuchtlinien der Reifegruppe 00 im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf den nächsten Seiten.

Name	Jahr	WP	Reifegruppe	Standort	Land	Parzellenanzahl	Pon.1-9	g Wuchshöhe	Reifebonitur Datum 1	Reifebonitur Datum 2	Gesamteindruck	Lagerung 1 (BBCH 70-75)	Lagerung 2 (vor Ernte)	Mängel nach Aufgang	Peronospora	Diaporthe	= Tage bis Reife	Intensität des Trockenstresses für die Kultur
				Gießhübl	AT	2	3.5	113	9.0	7.0		2.0	5.0	1.0		4	258	2
S0022_1	2022	X	00	Gleisdorf	AT	2		130	9.0	9.0		6.0					274	3
_				Hollabrunn	AT	2	4.0	98	8.0	6.5				1.0			276	1
				Gießhübl	AT	2	2.0	105	8.0	6.5		5.0	6.5	1.0		4	256	2
S0022_2	2022	X	00	Gleisdorf	AT	2		125	7.0	6.0		7.0	6.0				268	3
				Hollabrunn	AT	2	3.0	105	7.0	6.0				1.5			275	1
50022 2	2022	v	00	Gießhübl	AT	2	4.0	105	9.0	6.0		2.0	2.5	1.5		4	254	2
S0022_3	2022	X	00	Gleisdorf	AT	2		115	9.0	8.5		6.0	8.5				273	3
50022 8	2022		00	Gießhübl	AT	2	4.0	105	9.0	6.0		1.0	1.5	1.5		4	256	2
S0022_8	2022		00	Gleisdorf	AT	2		118	8.0	6.0		6.5	8.5				268	3
S0022_21	2022		00	Gießhübl	AT	2	4.0	98	8.5	5.0		2.0	3.0	1.5		4	254	2
30022_21	2022		00	Gleisdorf	AT	2		118	8.0	6.0		7.0	8.0				268	3
				Gießhübl	AT	2	4.5	110	9.0	5.0			2.0	1.0		4	259	2
S0022_44	2022	X	00	Gleisdorf	AT	2		118	8.0	7.0		6.5	7.5				270	3
				St. Florian	AT	2	4.0	108	8.0	5.0		4.5	4.5	1.0		4	254	2
				Gießhübl	AT	2	3.5	105	8.5	7.0		2.5	5.5	1.0		4	258	2
S0022_49	2022		00	Gleisdorf	AT	2		110	8.0	6.0		6.0	5.0				268	3
				Hollabrunn	AT	2	4.0	108	6.0	6.0				1.0			275	1
				Gießhübl	AT	2	3.5	103	8.5	6.5		1.5	3.5	1.0		4	256	2
S0022_52	2022		00	Gleisdorf	AT	2		115	9.0	6.0		6.0	7.0				268	3
				Hollabrunn	AT	2	4.0	100	5.0	6.5			1 -	1.5		_	276	1
G0022 54	2022		00	Gießhübl	AT	2	4.0	103	9.0	7.5		1.0	3.5	1.0		4	259	2
S0022_54	2022		00	Gleisdorf	AT	2	10	110	9.0	6.0		5.0	50	4.0			268	3
				Hollabrunn	AT	2	4.0	98	9.0	7.0		4.0	- 1	1.0		4	277	1
50022 70	2022		00	Gießhübl	AT	2	4.0	110	9.0	7.5		3.0	6.5	2.0		4	259	2
S0022_70	2022		00	Gleisdorf Hollabrunn	AT AT	2	4.0	120 108	9.0	7.0		7.0	8.0	2.0			272 277	3
				Gießhübl	AT	2	5.0	108	9.0	8.0		1.5	4.5	1.0		4	261	2
S0022_72	2022		00	Gleisdorf	AT	2	3.0	100	9.0	9.0		6.0	4.3	1.0		4	274	3
50022_72	2022		00	Hollabrunn	AT	2	4.0	108	9.0	8.0		0.0		1.0			280	1
				Gießhübl	AT	2	6.0	110	9.0	7.5		1.0	3.0	1.0		4	259	2
S0022_80	2022		00	Gleisdorf	AT	2	0.0	110		7.0		5.0		1.0			270	3
				Hollabrunn	AT	2	4.5	95	9.0	7.5		, v	V. 1	2.5			278	1
			1	Gießhübl	AT	2	4.0	108	9.0	7.5		2.0	5.0	1.0		4	259	2
S0022_81	2022		00	Gleisdorf	AT	2		115	9.0	9.0		6.0		1.0			274	3
				Hollabrunn	AT	2	4.0	110		6.5				1.0			276	1
				Gießhübl	AT	2		100	9.0	8.0		1.0	4.0	1.0		4	261	2
S0022_84	2022		00	Gleisdorf	AT	2		110		4.0		6.0					262	3
				Hollabrunn	AT	2	6.5	83	9.0	8.0				1.0		4	280	1

Name	Jahr	WP	Reifegruppe	Standort	Land	Parzellenanzahl	9-1-1 Bon Jugendentwicklung	B Wuchshöhe	Reifebonitur Datum 1	Reifebonitur Datum 2	Gesamteindruck	Eagerung 1 (BBCH 70-75)	Eagerung 2 (vor Ernte)	Mängel nach Aufgang	Peronospora	Diaporthe	□ Tage bis Reife	Intensität des Trockenstresses für die Kultur
				Rohrau	AT	2		70	1.5					1.0				1
50022 120	2022	v	00	Marchtrenk	AT	2		108	8.5	6.5		2.5	4.5	3.0			259	4
S0022_129	2022	X	00	Reichersberg Weikendorf	AT AT	2		93	9.0	9.0		1.0	1.0	2.0 1.5			254	3
				Dijon	FR	2			3.0				2.0	2.5			242	2
S0022_731	2022	X	00	Gleisdorf (Wünschendorfacker)	AT	2	1.1	113	6.3	1.0	4.0	3.9	4.8	1.0	3.0			2
S0022_733	2022	X	00	Gleisdorf (Wünschendorfacker)	AT	2	1.1	120	6.2	1.3	3.2	3.9	4.0	1.3	3.0			2
S0022_738	2022	X	00	Gleisdorf (Wünschendorfacker)	AT	2	2.3	108	6.8	3.0	2.9	2.9	2.5	4.0	3.5			2
S0022_890	2022	X	00	Gleisdorf (Wünschendorfacker)	AT	2	1.3	115	8.3	1.8	2.5	2.5	6.0	1.0	3.5			2
S0022_892	2022	X	00	Gleisdorf (Wünschendorfacker)	AT	2	1.3	110	8.3	1.0	2.5	3.0	3.0	1.5	3.0			2
S0022_907	2022	X	00	Gleisdorf (Wünschendorfacker)	AT	2	3.2	112	8.2	4.1	1.6	3.5	3.2	1.5	2.8	1		2

3.2.1.3 Sojabohne früh (Reifegruppe 000 und 0000)

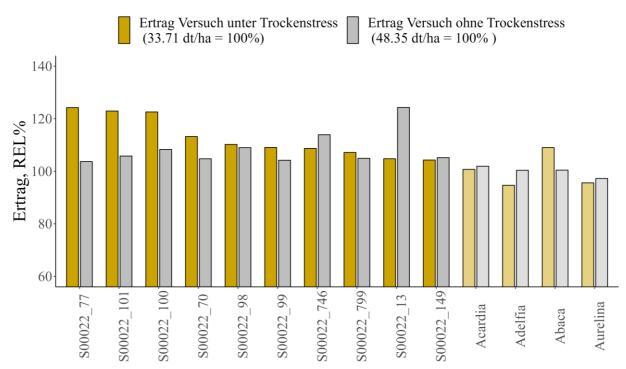


Abbildung 31: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter niedrigem Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten Zuchtlinien der Sojabohne der Reifegruppe 000 und 0000 und der Standardsorten *Acardia, Adelfia, Abaca*, und *Aurelina*.

Wie einleitend bereits geschrieben, ist in Zukunft mit einer Ausweitung der Soja-Anbaufläche in Österreich zu rechnen. Durch den Anbau von sehr frühreifen Sorten werden auch Anbauflächen in den Fokus rücken, welche bisher als für den Sojaanbau ungeeignet eingestuft wurden. Die österreichischen Züchterunternehmen haben sich auf diesen Bedarf eingestellt, und betreiben vermehrt Züchtungsarbeit mit Zuchtlinien der Reifegruppen 000 und 0000. Folglich wurden auch vergangenen Projektjahr wieder Sortenversuche mit Zuchtlinien dieser Reifegruppen angelegt. Gegenüber den mitangebauten Standardsorten *Abaca, Acardia, Adelfia* und *Aurelina* taten sich einige trockenstresstoleranten Zuchtlinien hervor, welche vor allem auf Trockenstress geplagten Standorten überzeugten (Abbildung 31). Wie bei den anderen Reifegruppen auch, wurden diese vielversprechenden Zuchtlinien ebenfalls hinsichtlich ihrer Qualitäten und ihres Verhaltens in der Umwelt untersucht (Tabelle 46 und Tabelle 47). Hier wurden wichtige Parameter wie Rohproteingehalt, Ölgehalt, Erntefeuchte, Wuchshöhe und Tausendkorngewicht erhoben. Ausgehend von den Versuchen wurden 20 Sojabohnen-Zuchtlinien der Reifegruppe 000 und 0000 für die Wertprüfung angemeldet.

Tabelle 46: Ausgewählte erhobene Parameter vielversprechender Sojabohne-Zuchtlinien der Reifegruppe 000 und 0000 im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf den nächsten Seiten.

Name	Jahr	WP	Reifegruppe	Standort	Land	Parzellenanzahl	Expression (13%) Restfeuchtigkeit)	% Erntefeuchte	Tausendkorngewicht	Rohproteingehalt	Ölgehalt	Intensität des Trockenstresses für die Kultur
				Gießhübl	AT	2	3 4.99	17.0		42.3 0	19.70	2
S00022_1	2022	X	000	Gleisdorf	AT	2	43. 61	17.4		44.20		3
				St. Florian	AT	2	35.61	16.6		44.6 0	1 9.30	2
				Gießhübl	AT	2	28.02	17.8				2
S00022_2	2022	X	000	Gleisdorf	AT	2	37 .21	17.3				3
				St. Florian	AT	2	3 8.56	21.1				2
S00022_3	2022	X	000	Gießhübl	AT	2	3 6.22	17.8				2
500022_5	2022	41	000	Gleisdorf	AT	2	48.69					3
S00022_4	2022	X	000	Gießhübl	AT	2	3 8.13	<u>17</u> .8				2
500022_4	2022	71	000	Gleisdorf	AT	2	5 0.66	16.3				3
				Gießhübl	AT	2	39 .81	17.3				2
S00022_13	2022		000	Gleisdorf	AT	2	58.83	_				3
				St. Florian	AT	2	47.8 0	18.0				2
				Marchtrenk	AT	2	5 3.63	23.4	205 .0			4
				Reichersberg	AT	2	58.27			<mark>41.9</mark> 0	<u>24.60</u>	3
S00022_46	2022	X	000/0000	Weikendorf	AT	2	32.82		156.0		24.15	1
				Moosburg	DE	2	42.39	15.3		3 7.85	18.35	3
				Dijon	FR	2	3 5.45					2
				Marchtrenk	AT	2	51.88	16.1		44.30	22.7 0	4
				Reichersberg	AT	2	53.58	13.6	<u>19</u> 0.5	43.90	23.2 0	3
S00022_60	2022	X	000/0000	Hohenheim	DE	2	43. 95			41.82	18.63	2
				Jülich	DE	2	27.76				-	2
				Moosburg	DE	2	41.72	12.5		<u>40.</u> 75		3
				Marchtrenk	AT	2		15.4		45.70		4
G00000 ==	2000		000/000	Reichersberg	AT	2	53.37					3
S00022_70	2022		000/0000	Weikendorf	AT	2	<u>39</u> .46		1/5.0			1
				Moosburg	DE	2	44.30			<u>40.</u> 20	18.05	3
				Dijon	FR	2	40.00		104 -	10.05	22.40	2
				Marchtrenk	AT	2	55.83			43.25		4
500022 75	2022		000/0000	Reichersberg	AT	2	51.95		184.5	41.65		3
S00022_77	2022		000/0000	Hohenheim	DE	2	44.61			39.80		2
				Moosburg	DE	2	39.90			<mark>40.</mark> 80	⊥ 8.45	3
				Dijon	FR	2	47.17		011	11.00	22 00	2
				Marchtrenk	AT	2	57.38			44.60		4
500033 00	2022	3.7	000/0000	Reichersberg	AT	2	57.42		208.0	44.35		3
S00022_98	2022	X	000/0000	Hohenheim	DE	2	35.67			43.65		2
				Moosburg	DE	2	40.57			<u>42.6</u> 5	U8. / 1 _U	3
			L	Dijon	FR	2	46.67	H2.0				2

Name	Jahr	WP	Reifegruppe	Standort	Land	Parzellenanzahl	E Kornertrag (13% E Restfeuchtigkeit)	% Erntefeuchte	^{po} ∃ Tausendkorngewicht	Rohproteingehalt		Intensität des Trockenstresses für die Kultur
				Marchtrenk	AT	2	54.54	15.3	220.0	<u>45.15</u>	22. 00	4
				Reichersberg	AT	2	54.74	13.5	213.5	<u>43.5</u> 5	22.6 0	3
S00022_99	2022		000/0000	Hohenheim	DE	2	41.06	14.5			18.58	2
				Moosburg	DE	2	39 .13	11.2		<u>41.8</u> 5	18.35	3
				Dijon	FR	2	40.50	14.6	010	440	22.2	2
				Marchtrenk	AT	2	54 .00	15.1	219.5	44.05	23.30	4
G00000 100	2022		000/000	Reichersberg	AT	2		13.5	2 13.0		23.6 0	3
S00022_100	2022		000/0000	Hohenheim	DE	2	41.62	15.9		41.21		2
				Moosburg	DE	2	42.53	10.9		41. 30	18.45	3
				Dijon	FR	2	49.06	13.3	2240	44.16	22.05	2
				Marchtrenk	AT	2	53.38	15.4		44.10	23.25	4
G00022 101	2022		000/0000	Reichersberg	AT	2	57.84	13.5	226.5	42.7 0	23.9 0	3
S00022_101	2022		000/0000	Hohenheim	DE	2	20.52	1117		20 50	10.05	2
				Moosburg	DE	2	39.52 46.50			<mark>39</mark> .50	18.95	2
				Dijon	FR		54.00		1020	42.00	22 5 5	
				Marchtrenk	AT	2		_	183.0			4
S00022_116	2022	X	000/0000	Reichersberg	AT	2		13.7	179.0		19.29	3
				Hohenheim Jülich	DE DE	2				<u>40</u> ,07	<u>1</u> 9.29	2
							32.15	10.8	200 5	11 (0	22.05	
				Marchtrenk	AT	2	56.17 46.42	16.3 13.6	208.5 198.5	44.60 44.35	23.25	4
S00022_128	2022	X	000/0000	Reichersberg	AT	2		12.7	198.3	43.30	23.10	3
				Hohenheim	DE	2				<u>43.3</u> 0	18.11	2
				Jülich Marchtrenk	DE AT	2		10.4	196.5	11 15	22.45	4
							49.21					
S00022_132	2022	X	000/0000	Reichersberg Hohenheim	AT DE	2	<u>49.4</u> 1 38.67		171.3	44.00 43.15		2
				Jülich	DE		30.57			43.1 0	10.42	2
				Marchtrenk	AT	2			2 06.0	13.0 0	23.25	4
				Reichersberg	AT	2	48.58			42.05		3
S00022_133	2022	X	000/0000	Hohenheim	DE	2	35.39	_	201 .0	41.51		2
				Jülich	DE	2	29.19			T1.4) 1	4 0.07	2
				Marchtrenk	AT	2			212.5	43.65	23.40	4
				Reichersberg	AT	2			210.0			3
S00022_136	2022	X	000/0000	Hohenheim	DE	2	36.22			41.88		2
200022_100			200,0000	Jülich	DE	2	29.77					2
				Moosburg	DE	2	43.16			43.05	17.25	3
				Marchtrenk	AT	2			172.5			4
				Reichersberg	AT	2			173.5			3
S00022_145	2022	X	000/0000	Hohenheim	DE	2	36.45			42.12		2
			1	Jülich	DE		28.10					2

Name		Jahr	WP	Reifegruppe	Standort	Land	Parzellenanzahl	Expression (13% Restfeuchtigkeit)	% Erntefeuchte	Tausendkorngewicht	Rohproteingehalt	Ölgehalt	Intensität des Trockenstresses für die Kultur
					Marchtrenk	AT	2	54.17	16.1	191.0			4
					Reichersberg	AT	2		14.7	190.0	42.35	22.60	3
S00022_1	149	2022		000/0000	Hohenheim	DE	2	39 .50	20.1		41. 07	18.16	2
					Moosburg	DE	2		11.8		43.45	17.45	3
					Dijon	FR	2	38.83	12.5				2
					Marchtrenk	AT	2	5 0.83	16.2		43.3 0		4
					Reichersberg	AT	2	50.11	13.6	201.0		22.8 5	3
S00022_1	159	2022	X	000/0000	Hohenheim	DE	2	36.84	14.4		41.23	18.86	2
					Jülich	DE	2	30.57	11.1				2
					Moosburg	DE	2	41.48	11.8		42.7 0	17.65	3
S00022_7	145	2022	X	000	Gleisdorf								
300022_1	43	2022	Λ	000	(Wünschendorfacker)	AT	2	42.77	14.3				2
					Gleisdorf								
					(Wünschendorfacker)	AT	2	48.4 0	14.7				2
S00022_7	746	2022	X	000	Hagenberg im								
					Mühlkreis	AT	2	<u>40</u> .09					4
					St. Florian	AT	2	43.86	16.9				2
S00022_7	40	2022	X	000	Gleisdorf								
500022_1	7)	2022	Λ	000	(Wünschendorfacker)	AT	2	42 .59	14.4				2
S00022_7	54	2022	X	000	Gleisdorf								
500022_1	J- T	2022	Λ	000	(Wünschendorfacker)	AT	2	3 4.87	13.9				2
					Gleisdorf								
					(Wünschendorfacker)	AT	2	43. 66					2
					Gießhübl b. Amstetten	AT	2	3 5.29	17.1	219.3	<u>42.2</u> 4	20 .45	2
S00022_7	799	2022		000	Hagenberg im								
					Mühlkreis	AT	2	<u>3</u> 5.75					4
					St. Florian	AT	2	5 0.81					2
					Schwäbisch Hall	DE	2	25.27		162.2	34.20	25.65	1
S00022_8		2022	X	000	St. Florian	AT	2	43.06					2
S00022_8	803	2022	X	000	St. Florian	AT	2	43.24	16.7				2

Tabelle 47: Ausgewählte bonitierte Parameter vielversprechender Sojabohne-Zuchtlinien der Reifegruppe 000 und 0000 im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf den nächsten Seiten.

Name	Jahr	WP	Reifegruppe	Standort	Land	Parzellenanzahl	9-1.noBondentwicklung	Wuchshöhe	Blattabreife	Reifebonitur Datum 1	Reifebonitur Datum 2	Gesamteindruck uog I agerma 1 (RRCH 70-75)		Lagerung 2 (vor Ernte)	Mängel nach Aufgang	Peronospora	Diaporthe	п Tage bis Reife	Intensität des Trockenstresses für die Kultur
				Gießhübl	AT	2	4.0	93		7.5	2.5	2.	5 [:	2.0	1.5		4.5	248	2
S00022_1	2022	X	000	Gleisdorf	AT	2		110		7.5	6.0	7.	0	7.0	_			268	3
				St. Florian	AT	2	5.5	103		5.0	3.5	2.		1.5	1.5		4	250	2
				Gießhübl	AT	2	4.0	93		7.0	2.5	6.	_	7.5	1.0		4.5	248	2
S00022_2	2022	X	000	Gleisdorf	AT	2		120		8.0	5.5	6.		8.5				265	3
				St. Florian	AT	2	2.0	103		6.5	2.5			7.5	1.0		7	247	2
S00022_3	2022	X	000	Gießhübl	AT	2	2.5	100		7.0	2.5	4.		6. 0	1.5		5	248	2
				Gleisdorf	AT	2		115		8.0	5.0			9.0	1.0			265	3
S00022 4	2022	X	000	Gießhübl	AT	2	3.0	98		6.5	3.0	4.		5.5	1.0		6	250	2
				Gleisdorf	AT	2	4.0	110		7.0	5.0	7.	_	8.5	1.0			265	3
G00022 12	2022		000	Gießhübl	AT	2	4.0	100		7.5	6.0	1.		1.0	1.0		4	254	2
S00022_13	2022		000	Gleisdorf	AT	2	4.0	105 103		7.5 6.5	8.0	5.	_	7.5	1.0			272	2
				St. Florian	AT	2	4.0	105	6.0	7.0	6.0	1.	_	1.5 4.5	1.0 3.0		4	247 255	4
				Marchtrenk	AT AT	2		95	6.9 7.3	9.0	3.5 8.0	1.		4.5 1.0	1.0			253	3
S00022_46	2022	X	000/0000	Reichersberg Weikendorf	AT	2		90	5.0	5.0	8.0	1.	U	1.0	1.5			233	1
300022_40	2022	Λ	000/0000	Moosburg	DE	2			3.0	3.0		1.	n I	2.0	1.0			221	3
				Dijon	FR	2						1.	_	2.0	2.5			241	2
				Marchtrenk	AT	2		110	6.7	4.5	1.5	4	_	2.0	3.0			251	4
				Reichersberg	AT	2		100	5.2	8.0	5.5	1.	_	1.0	2.0			246	3
S00022_60	2022	X	000/0000	Hohenheim	DE	2		100					Ť					251	2
				Jülich	DE	2		111											2
				Moosburg	DE	2						3.	0	3.0	1.0			230	3
				Marchtrenk	AT	2		108	4.5	3.0	1.0	2.	0	1.0	2.0			247	4
				Reichersberg	AT	2		88	4.5	8.0	4.5	1.	0	1.0	1.5			242	3
S00022_70	2022		000/0000	Weikendorf	AT	2			1.5	1.5					2.0				1
				Moosburg	DE	2						1.	_	2.0	1.0			238	3
				Dijon	FR	2								1.0	2.0			238	2
]				Marchtrenk	AT	2	l	108	4.7	2.0	1.0	5.	o 📗	3.0	3.0			246	4
				Reichersberg	AT	2		90	5.2	8.5	5.5	1.	0	1.0	2.0			244	3
S00022_77	2022		000/0000	Hohenheim	DE	2			5.2			1.						250	2
S00022_77	2022		000/0000	Hohenheim Moosburg	DE DE	2		90	5.2				0 [2	2.0	1.0			250 239	2 3
S00022_77	2022		000/0000	Hohenheim Moosburg Dijon	DE DE FR	2 2 2		90		8.5	5.5	1.	0 [:	2.0	1.0			250 239 241	2 3 2
S00022_77	2022		000/0000	Hohenheim Moosburg Dijon Marchtrenk	DE DE FR AT	2 2 2 2		90 100 85	6.5	4.0	1.0	1. [2.	0 [:	2.0 1.0 3.5	1.0 3.0 2.5			250 239 241 249	2 3 2 4
		v		Hohenheim Moosburg Dijon Marchtrenk Reichersberg	DE DE FR AT AT	2 2 2 2 2		90 100 85 85		8.5	5.5	1.	0 [:	2.0	1.0			250 239 241 249 247	2 3 2
S00022_77 S00022_98		X		Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim	DE DE FR AT AT DE	2 2 2 2 2 2 2		90 100 85	6.5	4.0	1.0	1. [2. [2.	0 [2	2.0 1.0 \$.5 1.0	1.0 3.0 2.5 1.5			250 239 241 249 247 250	2 3 2 4 3 2
		X		Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim Moosburg	DE DE FR AT AT DE DE	2 2 2 2 2 2 2 2		90 100 85 85	6.5	4.0	1.0	1. [2.	0 [2	2.0 1.0 \$.5 1.0	1.0 3.0 2.5 1.5			250 239 241 249 247 250 237	2 3 2 4 3 2 3
		X		Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim Moosburg Dijon	DE DE FR AT AT DE DE FR	2 2 2 2 2 2 2 2 2		\$5 \$5 \$5	6.5	4.0 9.0	1.0 7.0	1. [2. 2. 1.	0 [2 5 [] 0	2.0 1.0 3.5 1.0 1.0 2.0	1.0 3.0 2.5 1.5			250 239 241 249 247 250 237 240	2 3 2 4 3 2 3 2
		X		Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim Moosburg Dijon Marchtrenk	DE DE FR AT AT DE DE FR AT	2 2 2 2 2 2 2 2 2 2		\$5 \$5 \$5 \$5	6.5 6.2	4.0 9.0	1.0 7.0	1.	0 [2 5] 0 0 0 [2	2.0 1.0 \$.5 1.0 1.0 2.0	1.0 3.0 2.5 1.5 1.0 3.0 3.0			250 239 241 249 247 250 237 240 248	2 3 2 4 3 2 3 2 4
		X		Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim Moosburg Dijon	DE DE FR AT DE DE DE FR AT	2 2 2 2 2 2 2 2 2 2 2 2		\$5 \$5 \$5	6.5	4.0 9.0	1.0 7.0	1. [2. 2. 1.	0 [2 5] 0 0 0 [2	2.0 1.0 3.5 1.0 1.0 2.0	1.0 3.0 2.5 1.5			250 239 241 249 247 250 237 240	2 3 2 4 3 2 3 2
S00022_98	2022	X	000/0000	Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim Moosburg Dijon Marchtrenk Reichersberg	DE DE FR AT AT DE DE FR AT	2 2 2 2 2 2 2 2 2 2		\$5 \$5 \$5 \$5 \$70	6.5 6.2	4.0 9.0	1.0 7.0	1.		2.0 1.0 \$.5 1.0 1.0 2.0	1.0 3.0 2.5 1.5 1.0 3.0 3.0			250 239 241 249 247 250 237 240 248 246	2 3 2 4 3 2 3 2 4 3
S00022_98	2022	X	000/0000	Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim	DE DE FR AT DE DE FR AT AT DE DE FR AT AT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		\$5 \$5 \$5 \$5 \$70	6.5 6.2	4.0 9.0	1.0 7.0	1.	0 [1 5 [0 0 0 0 [2 0 0]	2.0 1.0 3.5 1.0 1.0 2.0 2.0 1.0	1.0 3.0 2.5 1.5 1.0 3.0 3.0 2.5			250 239 241 249 247 250 237 240 248 246 250	2 3 2 4 3 2 3 2 4 3 2
S00022_98	2022	X	000/0000	Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim Moosburg Marchtrenk Reichersberg Hohenheim Moosburg	DE DE FR AT DE DE FR AT DE DE FR AT AT DE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		\$5 \$5 \$5 \$5 \$5 \$5	6.5 6.2	4.0 9.0	1.0 7.0	1.	0	2.0 1.0 3.5 1.0 1.0 2.0 2.0 1.0	1.0 3.0 2.5 1.5 1.0 3.0 2.5 1.0			250 239 241 249 247 250 237 240 248 246 250 236	2 3 2 4 3 2 3 2 4 3 2 4 3 2
S00022_98	2022	X	000/0000	Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim Moosburg Dijon	DE DE FR AT DE DE FR AT AT DE FR AT AT FR AT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		\$5 \$5 \$5 \$5 \$70	6.5 6.2 5.8 6.0	4.0 9.0 3.5 9.0	1.0 7.0 1.0 7.0	1.	0 [2 5] 0 0 [2 0] 5]	2.0 1.0 \$.5 1.0 2.0 2.0 1.5 1.0	1.0 3.0 2.5 1.5 1.0 3.0 2.5 1.0 2.5			250 239 241 249 247 250 237 240 248 246 250 236 232	2 3 2 4 3 2 3 2 4 3 2 4 3 2 3 2
S00022_98	2022	X	000/0000	Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim Moosburg Dijon Marchtrenk	DE DE FR AT DE DE FR AT AT DE FR AT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		\$5 \$5 \$5 \$5 \$5 \$70 \$5	6.5 6.2 5.8 6.0	4.0 9.0 3.5 9.0	1.0 7.0 1.0 7.0	1.	0 [2 5] 0 0 [2 0] 5]	2.0 1.0 3.5 1.0 1.0 2.0 1.0 1.5 1.0	1.0 3.0 2.5 1.5 1.0 3.0 2.5 1.0 2.5 2.5			250 239 241 249 247 250 237 240 248 246 250 236 232 247	2 3 2 4 3 2 3 2 4 3 2 4 3 2 4 3 2 4 4 3 2 4 4 4 3 2 4 4 4 3 2 4 4 4 4
S00022_98 S00022_99	2022	x	000/0000	Hohenheim Moosburg Dijon Marchtrenk Reichersberg	DE DE FR AT DE DE FR AT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		\$0 100 \$5 \$5 \$5 \$5 \$7 70 \$5	6.5 6.2 5.8 6.0	4.0 9.0 3.5 9.0	1.0 7.0 1.0 7.0	1.	0 [1:55] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.0 1.0 3.5 1.0 1.0 2.0 2.0 1.5 1.5 1.0 2.0	1.0 3.0 2.5 1.5 1.0 3.0 2.5 1.0 2.5 2.5			250 239 241 249 247 250 237 240 248 246 250 236 232 247 246	2 3 2 4 3 2 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 3 2 4 4 3 3 2 4 3 3 2 4 4 3 3 2 4 4 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 3 3 2 4 3 3 2 3 3 3 2 3 3 2 3 3 3 3
S00022_98 S00022_99	2022	X	000/0000	Hohenheim Moosburg Dijon Marchtrenk Reichersberg Hohenheim	DE FR AT DE DE FR AT DE FR AT AT DE AT DE AT DE TR AT DE TR AT DE TR AT AT DE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		\$0 100 \$5 \$5 \$5 \$5 \$7 70 \$5	6.5 6.2 5.8 6.0	4.0 9.0 3.5 9.0	1.0 7.0 1.0 7.0	1.	0	2.0 1.0 3.5 1.0 1.0 2.0 1.0 1.5 1.0 3.5 1.0	1.0 3.0 2.5 1.5 1.0 3.0 2.5 1.0 2.5 1.0			250 239 241 249 247 250 237 240 248 246 250 236 232 247 246 250	2 3 2 4 3 2 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 4 3 2 4 4 4 3 2 4 4 4 4

	1		1																
Name	Jahr	WP	Reifegruppe	Standort	Land	Parzellenanzahl	Jugendentwicklung Bou-1-0	m Wuchshöhe	Blattabreife	Reifebonitur Datum 1	Reifebonitur Datum 2	Gesamteindruck	Engerung 1 (BBCH 70-75)	Lagerung 2 (vor Ernte)	Mängel nach Aufgang	Peronospora	Diaporthe	= Tage bis Reife	Intensität des Trockenstresses für die Kultur
				Marchtrenk	AT	2		90	7.2	5.0	1.0		1.0	2.0	4.5			250	4
				Reichersberg	AT	2		85	6.5	9.0	7.0		1.0	1.0	4.0			248	3
S00022_101	2022		000/0000	Hohenheim	DE	2													2
				Moosburg	DE	2							1.0	1.0	1.0			239	3
				Dijon Marchtrenk	FR AT	2		90	1.7	1.0	1.0		2.5	1.0	2.0			237 233	4
				Reichersberg	AT	2		70	1.7	2.0	1.0		1.0	2.5	2.0			232	3
S00022_116	2022	X	000/0000	Hohenheim	DE	2		100	1.3	2.0	1.0		1.0	<u></u>	2.0			244	2
				Jülich	DE	2		89										277	2
				Marchtrenk	AT	2		83	2.7	1.0	1.0		1.5	3.0	2.5			239	4
G00022 120	2022	3,	000/0000	Reichersberg	AT	2		65	2.5	5.0	1.5		1.0	1.5	1.0			237	3
S00022_128	2022	X	000/0000	Hohenheim	DE	2	<u></u>	90										244	2
				Jülich	DE	2		103											2
				Marchtrenk	AT	2		85	2.8	1.0	1.0		2.5	2.0	2.5			239	4
S00022_132	2022	X	000/0000	Reichersberg	AT	2		75	2.0	4.0	1.0		1.0	1.0	1.0			235	3
300022_132	2022	Λ.	000/0000	Hohenheim	DE	2		90										246	2
				Jülich	DE	2		85											2
				Marchtrenk	AT	2		83	2.8	1.0	1.0		5.5	3.5	2.0			239	4
S00022_133	2022	X	000/0000	Reichersberg	AT	2		90	2.0	4.0	1.0		1.0	1.0	1.0			235	3
				Hohenheim Jülich	DE DE	2		100 108										246	2 2
				Marchtrenk	AT	2		93	3.3	1.0	1.0		5.0	4.0	2.0			240	4
				Reichersberg	AT	2		83	3.0	6.0	2.0		1.0	1.0	2.0			239	3
S00022_136	2022	X	000/0000	Hohenheim	DE	2		95	3.0	0.0	2.0		1.0	1.0	2.0			246	2
500022_150	2022	21	000,0000	Jülich	DE	2		106										210	2
				Moosburg	DE	2							4.5	5.0	1.0			243	3
				Marchtrenk	AT	2		90	1.8	1.0	1.0		1.0	1.5	2.5			234	4
S00022_145	2022	X	000/0000	Reichersberg	AT	2		80	1.3	2.0	1.0		1.0	1.0	1.0			232	3
500022_145	2022	Λ	000/0000	Hohenheim	DE	2		85										241	2
				Jülich	DE	2		94											2
				Marchtrenk	AT	2		90	5.7	3.0	1.0		1.0	1.0	3.0			247	4
G00000 110	2022		000/0000	Reichersberg	AT	2		70	5.3	8.5	5.5		1.0	1.0	2.0			244	3
S00022_149	2022		000/0000	Hohenheim	DE	2		80					1.0	1.0	1.0			255	2
				Moosburg	DE	2							1.0	1.0	1.0			243	3
				Dijon	FR	2		- d =	2.7	1.0	1.0		1.0	1.0	1.5			235	2
				Marchtrenk Reichersberg	AT AT	2		8 5	2.7	1.0	1.0		1.0	1.0	2.0			239 235	3
S00022 159	2022	X	000/0000	Hohenheim	DE	2		80	2.2	4.5	1.0		1.0	1.0	1.5			245	2
500022_123	2022	21	000,0000	Jülich	DE	2		85										213	2
				Moosburg	DE	2							1.5	2.0	1.0			235	3
500022 745	2022	17	000	Gleisdorf			Ī												
S00022_745	2022	X	000	(Wünschendorfacker)	AT	2	1.3	93		6.0	1.5	3.5	4.5	4.3	1.0	2.5			2
]	Gleisdorf															
				(Wünschendorfacker)	AT	2	1.0	93		7.3	2.8	4.0	4.5	4.3	1.5	3.0			2
S00022_746	2022	X	000	Hagenberg im Mühlkreis		_													
					AT	2	20	68		4.5	3.0	3.0	1.0	1.5	2.0				4
	-			St. Florian Gleisdorf	AT	2	2.0	100		6.5	4.0	3.3	4,0	6.0	1.0				2
S00022_749	2022	X	000	(Wünschendorfacker)	AT	2	1.0	78		8.0	2.0	5.5	5.0	5.8	1.0	2.5			2
				Gleisdorf	111		1.0	, 0		0.0	2.0	5.5	5.0	5.0	1.0	2.3			
S00022_754	2022	X	000	(Wünschendorfacker)	AT	2	1.5	95		7.0	1.5	5.0	5.0	5.8	1.8	2.0			2
				Gleisdorf			<u> </u>							T					
				(Wünschendorfacker)	AT	2	1.5	103		8.6	3.0	1.0		3.0	1.0	3.0			2
				Gießhübl b. Amstetten	AT	2	4.0	103		9.0	6.0	1.0		2.5	1.0		2		2
S00022_799	2022		000	Hagenberg im Mühlkreis															
					AT	2		63		5.0	2.0	3.0			2.5		3.5		4
				St. Florian	AT	2	5.5	105		8.0	6.0	2.0	4.0	7.5			1		2
G00000 000	207		0.5.5	Schwäbisch Hall	DE	2				5.9			_ l.		2.0			2.7	1
	2022	X	000	St. Florian	AT	2	1.5	93		5.0	3.0		5.0	6.5	1.0		6	247	2
S00022_803	2022	X	000	St. Florian	AT	2	2.5	100		4.0	3.0		4.5	6.0	1.0		7	247	2

3.2.2 RAPS

Beim Raps korreliert der eingefahrene Ertrag deutlich negativ mit den gemessenen Hitzestunden während der Vegetationsperiode. Außerdem führen hohe Temperaturen zu Qualitätseinbußen. Starkniederschlagsereignisse setzen dieser Kulturart ebenfalls zu, hier besteht die Gefahr des Aufplatzens der reifen Schoten sowie des vermehrten Auftretens von Krankheiten wie *Phoma*, *Sclerotinia* und *Alternaria*. Der Rapsanbau dürfte besonders vom sich zukünftig noch verstärkenden Klimawandel betroffen sein, weswegen hier eine züchterische Weiterentwicklung bestehender Sorten dringend notwendig ist. Im Projekt KLIMAFIT 2 wird versucht mit Hilfe gezielter Resistenzzüchtung, sowie einer Selektion auf Trocken- und Hitzetoleranz, dieser Problematik etwas entgegenzusetzen.

Im Vergleich zum ersten Projektjahr konnten im zurückliegenden Projektjahr die Anzahl der Rapsversuche ausgedehnt werden. An insgesamt 24 Standorten, von denen sich 7 innerhalb Österreichs befanden, wurden insgesamt 110 Versuche angelegt, 40 mehr als noch im Vorjahr. Aufgrund des breiten Versuchsnetzes und der unterschiedlichen Versuchsstandorte müssen die Ergebnisse differenziert betrachtet werden. Die Versuchsstandorte in Ostösterreich, Ungarn und Frankreich brachten Aufschlüsse über die Trockenstresstoleranz der Genotypen. Dem gegenüber konnte an den Standorten in Tschechien und Polen gut auf Ertragspotential selektiert werden. In den Rapsversuchen werden zunehmend Insektenschädlinge ein Problem, die zum einen natürlich Ertrag kosten, zum anderen auch die Auswertbarkeit der Versuche bzw. die Versuchsqualität beeinträchtigen. Als zusätzliches Selektionskriterium gewinnt daher zunehmend die Robustheit und Wüchsigkeit im Jugendstadium von Bedeutung, durch die Fraßschäden besser kompensiert werden können.

Insgesamt 32 der 110 Versuche (29,1 %) wurden von den Züchter:innen als Trockenstress-Versuche klassifiziert (Stufe 1 und 2). Bei den restlichen 87 Versuchen lag entweder nur ein niedriger Trockenstress (Stufe 3; 79 Versuche, entspricht 71,8 %) oder gar kein Trockenstress (Stufe 4; 8 Versuche, entspricht 7,3 %) vor. Idealbedingungen zur Selektion hinsichtlich Trockenstresstoleranz war somit nicht an allen Standorten gegeben, was wiederrum aber dann die Fokussierung auf andere Parameter – wie z.B. die bereits angesprochene Robustheit oder Wüchsigkeit und ggf. Krankheitstoleranzen – ermöglichte. Bei der Auswertung der Versuche wurde zwischen Linien- und Hybridraps differenziert.

3.2.2.1 Linienraps

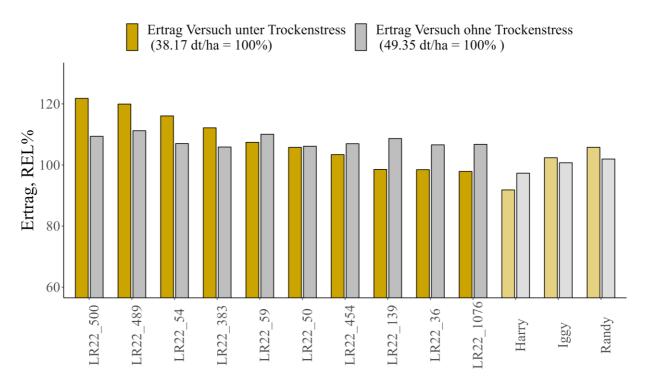


Abbildung 32: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten Linienraps-Zuchtlinien und der drei Standardsorten *Harry, Iggy* und *Randy*.

Das Diagramm in Abbildung 32 gibt den adjustierten, mittleren relativen Kornertrag der zehn ertragreichsten Linienraps-Genotypen wieder, welche im zurückliegenden Projektjahr 2022 in die Versuche gestellt wurden. Zusätzlich dazu wird auch der adjustierte, mittlere relative Kornertrag der mit angebauten Standardsorten Harry, Iggy und Randy aufgeführt. Diese drei Standardsorten dienten als Brückensorten über die Versuche hinweg. Auffällig ist hier vor allem das schwache Abschneiden der Standardsorte Harry. Dem gegenüber taten sich vor allem unter Trockenstressbedingungen einige Linienraps-Zuchtstämme hervor, welche überdurchschnittlich gute Ertragswerte lieferten, und dann auch noch unter Normalbedingungen gut abschnitten. Dieses Potential vereinzelter Zuchtstämme gilt es nun in weiterführenden Parzellenversuchen zu verifizieren, um dann die vielversprechendsten Kandidaten für die Wertprüfung anzumelden.

Die im vergangenen Projektjahr erhobenen Daten bezüglich des Verhaltens der Zuchtlinien in der Umwelt für ausgewählte Parameter wie z.B. Wuchshöhe, Reife, Jugendentwicklung, Schossintensität, taube Spitzen, Mangel vor/nach Winter und Lagerung (Tabelle 49), aber auch die bisher erhobenen Qualitäten wie Rohproteingehalt, Ölfeuchte und Erntefeuchte (Tabelle 48) liefern bereits eine fundierte Datenbasis für die zukünftige Entwicklung von klimafitten Linienraps-Sorten.

Tabelle 48: Ausgewählte erhobene Parameter vielversprechender Linienraps-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf den nächsten Seiten.

Name	Jahr	Standort	Land	Parzellenanzahl	Kornertrag Kornertrag	% Rohproteingehalt	% Erntefeuchte	% Ölgehalt	Intensität des Trockenstresses für die Kultur
	7	Reichersberg	AT	2	53.7	16.6	10.7	51.3	3
		Feldkirchen	AT	2	49.6	10.0	18.0	J 1.J	3
LR22_36	2022	Gerhaus	AT	2	28.3	20.8		47.0	1
		Reichersberg	AT	1	63.3	20.0	10.2	.,,,,	
		Feldkirchen	AT	1	72.3		11.4		3
		Reichersberg	AT	2		15.2	10.9	51.1	3
		Feldkirchen	AT	2	51.0		16.4		3
LR22_50	2022	Gerhaus	AT	2	31.1	19.9	6.6	47.5	1
		Reichersberg	AT	1	5 9.3		10.1		3
		Feldkirchen	AT	1	72.2		10.7		3
		Reichersberg	AT	2	54.7	15.3	11.0	4 9.7	3
		Feldkirchen	AT	2	52.9		18.8		3
LR22_54	2022	Gerhaus	AT	2	35.1	20.2	6.8	46.4	1
		Reichersberg	AT	1	63.5		10.2		3
		Feldkirchen	AT	1	68.6		11.1		3
		Reichersberg	AT	2	55 .3	14.9	10.8	52.2	3
		Feldkirchen	AT	2	57.9		17.7		3
LR22_59	2022	Gerhaus	AT	2	31.8	20.3	7.3	47.9	1
		Reichersberg	AT	1	64.8		10.2		3
		Feldkirchen	AT	1	67.7		10.9		3
		Reichersberg	AT	2	56.7	15.4	11.0	5 0.5	3
		Feldkirchen	AT	2	55.7		16.2		3
LR22_139	2022	Gerhaus	AT	2	28.4	19.7	6.5	47.6	1
		Reichersberg	AT	1	63.1		10.1		3
		Feldkirchen	AT	1	67.3		11.0		3
		Reichersberg	AT	2	<u>53</u> .5	15.5		51.6	3
		Feldkirchen	AT	2	5 0.2		17.7		3
LR22_383	2022	Gerhaus	AT	2	33.6	20.6		45.9	1
		Reichersberg	AT	1	<u>59.</u> 8		10.4		3
		Feldkirchen	AT	1	73.9	.	11.4		3
		Reichersberg	AT	2	55.3	15.8		51.5	3
I DAG 454	2022	Feldkirchen	AT	2	50.3	01.0	17.9	16.2	3
LR22_454	2022	Gerhaus	AT	2	30.2	21.0	6.3	46.2	1
		Reichersberg	AT	1	61.8		10.0		3
		Feldkirchen	AT	1	72.2		11.1		3

Name	Jahr	Standort	Land	Parzellenanzahl	Kornertrag	% Rohproteingehalt	% Erntefeuchte	% Ölgehalt	Intensität des Trockenstresses für die Kultur
<u> </u>	ſ	Reichersberg	AT	2	53.6	15.2	10.8	52.7	3
		Feldkirchen	AT	2	53.9	13.2	17.4	52.7	3
LR22_489	2022	Gerhaus	AT	2	36.5	19.6	6.8	47.7	1
		Reichersberg	AT	1	63.3	27.	10.2		3
		Feldkirchen	AT	1	77.1		11.1		3
		Reichersberg	AT	2	53.5	14.3	10.7	52.1	3
		Feldkirchen	AT	2	55.2		18.0		3
LR22_500	2022	Gerhaus	AT	2	37.2	18.9	6.7	47.3	1
		Reichersberg	AT	1	62.3		9.9		3
		Feldkirchen	AT	1	73.3		10.9		3
		Reichersberg	AT	2	49.5	16.5		51.3	3
		Feldkirchen	AT	2	52.6		12.6		3
LR22_1076	2022	Gerhaus	AT	2	28.1	20.8	6.6	4 7.4	1
		Reichersberg	AT	1	60.9		9.9		3
		Feldkirchen	AT	1	76.1		11.1		3

Tabelle 49: Ausgewählte bonitierte Parameter vielversprechender Linienraps-Zuchtlinien im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf den nächsten Seiten.

Name	Jahr	Standort	Land	Parzellenanzahl	Blühbeginn Tage ab 1. Jän.	Wuchshöhe	Reifebonitur früh	Reifebonitur spät	Jugendentwicklung (Herbstentwicklung)	Schossintensität (Frühjahrsentwicklung)	taube Spitzen	Mängel vor Winter	Mängel nach Winter	Lagerung früh	Lagerung spät	Intensität des Trockenstresses für die Kultur
	ſ	Reichersberg	AT	2	1. Jan.	cm 150	7.0	1.5	3.9	4.0	3.5	2.2	Bon 2.4	1.5	2.4	3
		Feldkirchen	AT	2	103	140	7.2	1.5	4.3	5.0	7.5	2.4	3.8	2.0	2.7	3
LR22_36	2022	Gerhaus	AT	2	113	124	1.4	5.0	4.9	5.8	7.9	2.2	3.4	2.0	1.0	1
ER22_50	2022	Reichersberg	AT	1	106	150	5 .0	2.0	5.0	3.0	7.0	3.0	3.0	1.0	1.0	3
		Feldkirchen	AT	1	102	145	7.0		4.0	3.0	8.0	4.0	3.0	1.0	3.0	3
		Reichersberg	AT	2	104	143	6.0	1.0	4.9	4.5	5.5	1.9	2.5	1.0	1.9	3
		Feldkirchen	AT	2	102	140	6.8	1.0	5.3	3.6	5.0	4.1	6.0	1.1	2.7	3
LR22_50	2022	Gerhaus	AT	2	115	125		5.1	5.7	5.8	6.7	3.3	4.1		1.0	1
_		Reichersberg	AT	1	104	140	6.0	2.0	5.0	2.0	5.0	3.0	3.0	2.0	2.0	3
	•	Feldkirchen	AT	1	102	145	5 .0		5.0	3.0	7.0	2.0	2.0	2.0	4.0	3
		Reichersberg	AT	2	108	160	7.5	1.5	3.5	4.5	3.1	1.9	2.5	1.0	4.5	3
	•	Feldkirchen	AT	2	106	155	8.3	2.5	5.5	4.6	4.4	5.3	5.2	2.0	4.1	3
LR22_54	2022	Gerhaus	AT	2	115	135		6.5	5.4	5.9	7.4	2.1	3.4		3.0	1
		Reichersberg	AT	1	108	160	7.0	3.0	4.0	4.0	5.0	1.0	2.0	1.0	1.0	3
		Feldkirchen	AT	1	105	155	7.0		1.0	3.0	3.0	2.0	2.0	1.0	3.0	3
		Reichersberg	AT	2	105	148	7.5		4.4	3.0	4.5	2.4	3.0	1.0	3.9	3
		Feldkirchen	AT	2	102	155	7.9	2.9	3.7	1.1	4.5	3.5	3.8	1.5	3.0	3
LR22_59	2022	Gerhaus	AT	2	111	134		6.4	5.8	3.0	5.4	2.8	4.1		1.0	1
		Reichersberg	AT	1	104	150	7.0	4.0	1.0	1.0	3.0	2.0	3.0	1.0	2.0	3
		Feldkirchen	AT	1	103	155	7.0		5.0	6.0	6.0	2.0	3.0	2.0	4.0	3
		Reichersberg	AT	2	108	150	6.5	1.0	3.2	4.5	3.9	1.4	1.7	1.0	2.4	3
		Feldkirchen	AT	2	105	<u>14</u> 8	<u>6.</u> 5	1.1	4.9	6.4	4.5	2.8	4.1	1.0	2.1	3
LR22_139	2022	Gerhaus	AT	2	115	136		4. 0	6.1	4.9	6.9	2.8	3.6		5.0	1
		Reichersberg	AT	1	107	150	5 .0	1.0	2.0	3.0	3.0	1.0	1.0	1.0	2.0	3
		Feldkirchen	AT	1	106	150	6 .0		5.0	3.0	7.0	4.0	4.0	1.0	1.0	3
		Reichersberg	AT	2		145			3.5	5.0			1.5			3
		Feldkirchen	AT	2	104	144	7.5	1.7	6.1	3.8	5.8	5.5		1.0		3
LR22_383	2022	Gerhaus	AT	2	115	136	_ 1	2.2	4.4	4.9		1.7			4.0	1
		Reichersberg	AT	1	107	145		2.0	4.0	4.0			2.0			3
		Feldkirchen	AT	1	104	150		1 0	4.0	3.0	3.0	_	4.0	2.0		3
		Reichersberg	AT	2	104	143			3.4	5.5		1.6		1.5	4.0	3
I D22 454	2022	Feldkirchen	AT	2	101	140	6 .1	1.0	3.5	5.5	3.5			2.0	3.8	3
LR22_454	2022	Gerhaus	AT	2	110	129	đΩ	3.0	5.6	6.4 12.0		1.8		1.0	1.0	1
		Reichersberg	AΤ	1	104	145 145		3.0	1.0	2.0			2.0			3
	<u> </u>	Feldkirchen	AT	1	102	145	4.0		1.0	3.0	4 .U	2.0	∠.0	3.0	3.0	3

9		dort		Parzellenanzahl	Blühbeginn	Wuchshöhe	Reifebonitur früh	Reifebonitur spät	Jugendentwicklung (Herbstentwicklung)	Schossintensität (Frühjahrsentwicklung)	taube Spitzen	Mängel vor Winter	Mängel nach Winter	Lagerung früh	Lagerung spät	Intensität des Trockenstresses für die Kultur
Name	Jahr	Standort	Land	Parze	Tage ab 1. Jän.	cm		В	on.1-9				Bon	.1-9		Inten für d
		Reichersberg	AT	2	105	147	7.9	3.0	4.1	3.0	3.0	1.4	1.8	1.5	1.9	3
		Feldkirchen	AT	2	103	150	8.1	1.6	5.8	3.0	5.0	2.6	3.0	1.1	1.7	3
LR22_489	2022	Gerhaus	AT	2	110	128		2.6	5.2	4.2	3.6	3.0	3.2		2.0	1
		Reichersberg	AT	1	104	140	7.0	1.0	4.0	2.0	5.0	2.0	2.0	2.0	2.0	3
		Feldkirchen	AT	1	102	150	5 .0		3.0	1.0	5.0	3.0	2.0	2.0	1.0	3
		Reichersberg	AT	2	103	147	5.4	1.0	3.6	3.0	4.5	1.9	1.8	1.0	2.9	3
		Feldkirchen	AT	2	99	145	7.5	1.0	3.7	2.7	6.0	2.9	2.9	1.0	1.6	3
LR22_500	2022	Gerhaus	AT	2	109	132		2.5	5.9	2.4	5.9	2.6	3.4		2.0	1
		Reichersberg	AT	1	104	150	<u>6</u> .0	2.0	1.0	3.0	5.0	1.0	1.0	2.0	1.0	3
		Feldkirchen	AT	1	101	145	6 .0		3.0	1.0	5.0	4.0	4.0	2.0	1.0	3
		Reichersberg	AT	2	102	135	7.5	2.5	2.7	4. 0	3.9	3.9	3.7	1.0	0.9	3
		Feldkirchen	AT	2	100	140	7.8	2.6	4.0	3.5	6.5	2.9	4.1	0.9	2.8	3
LR22_1076	2022	Gerhaus	AT	2	109	121		5.0	5.9	5.3	6.9	2.7	4.4		1.0	1
		Reichersberg	AT	1	103	14 0	8.0	4. 0	2.0	1.0	6.0	3.0	3.0	1.0	1.0	3
		Feldkirchen	AT	1	102	150	6.0		2.0	1.0	6.0	1.0	2.0	1.0	2.0	3

3.2.2.2 Hybridraps

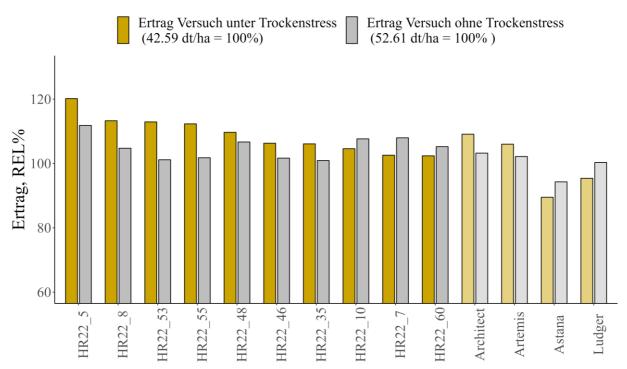


Abbildung 33: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten Hybridraps-Zuchtlinien und der Standardsorten Architect, Artemis, Astana und Ludger.

In Abbildung 33 ist der adjustierte, mittlere relative Kornertrag der zehn ertragreichsten Hybridraps-Genotypen unter Trockenstress und ohne Trockenstress abgebildet, welche in 2022 in den Parzellenversuchen angebaut wurden. Zusätzlich dazu wird auch der adjustierte, mittlere relative Kornertrag der Standardsorten Architect, Artemis, Astana und Ludger mit aufgeführt, welche in allen durchgeführten Hybridraps-Versuchen als Vergleichssorten mit angebaut wurden. Erhobene Parameter beim Hybridraps zur Ermittlung der Qualitäten sind in Tabelle 50 wiedergegeben. Im Feld bonitierte Parameter zum Feststellen des Verhaltens der Zuchtlinien in der Umwelt sind in Tabelle 51 dargestellt. Im Gegensatz zum Linienraps konnten bereits vielversprechende Zuchtlinien zur Wertprüfung angemeldet werden: insgesamt 14 Stämme wurden im zurückliegenden Projektjahr 2022 gemeldet.

Tabelle 50: Ausgewählte erhobene Parameter vielversprechender Hybridraps-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf den nächsten Seiten.

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Kornertrag	% Rohproteingehalt	% Erntefeuchte	% Ölgehalt	 □ Intensität des Trockenstresses für die Kultur
			Kujavy	CZ	3	56.6	_	5.5		3
			Chlumec	CZ	3	44.1	22.2	12.7	46.5	3
			Lucmierz	PL	3	44.9		6.9		2
			Kroscina Mala	PL	3	5 7.3		9.2		2
			Bozzai	HU	3	27.1		6.9		1
			Boly	HU	3	55.5		6.5		1
HR22_2	2022	X	Brno	CZ	3	41.0		5.5		3
			Przewloka	PL	3	3 6.0		10.1		2
			Wiski	PL	3	41.8		5.0		2
			Selommes	FR	3					1
			Rostock	DE	3	45.7		5.1		3
			Gerhaus	AT	3	33.3	18.1	8.2	4 9.8	1
			Reichersberg	AT	3	5 4.8	1 5.6	11.2	52 .0	3
			Reichersberg	AT	3	5 6.8	13.9	11.0	54.7	3
HR22_3	2022	X	Feldkirchen	AT	3	5 5.6	12.8	11.8	54.4	3
11K22_3	2022	Λ	Pyhra	AT	3	5 9.9		7.1		4
			Gerhaus	AT	3	33.8		7.0	5 0.1	1
			Reichersberg	AT	3	5 9.8	13.7			3
HR22_5	2022	X	Feldkirchen	AT	3	56.2	13.2	11.3	5 5.1	3
111122_3	2022	Λ	Pyhra	AT	3	61.9		6.5		4
			Gerhaus	AT	3	42.9		_	50 .4	1
			Reichersberg	AT	3	5 5.4	_			3
HR22_7	2022	X	Feldkirchen	AT	3		1 5.1		5 3.6	3
		2 1	Pyhra	AT	3	61.6		7.4		4
			Gerhaus	AT	3	35.4		6.9	5 0.7	1
			Reichersberg	AT	3		<u>17</u> .7	11.4	<u>51</u> .8	3
HR22_8	2022	X	Pyhra	AT	3	58.9		5.2		4
			Gerhaus	AT	3	39.9		6.9	51 .6	1
			Reichersberg	AT	3		<u>1</u> 6.4		5 1.5	3
HR22_10	2022		Pyhra	AT	3	<u>56.</u> 7		5.2		4
			Gerhaus	AT	3	3 6.2	18.7	7.6	49.2	1

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Kornertrag	% Rohproteingehalt	% Erntefeuchte	% Ölgehalt	Untensität des Trockenstresses für die Kultur
			Reichersberg	AT	3	55.7	14.1	10.8	51 .8	3
HR22_35	2022		Feldkirchen	AT	3		14.0	12.1	5 3.1	3
			Pyhra	AT	3	51.7		7.2		4
			Gerhaus	AT	3	36.9	20.1	6.9	48.1	1
			Reichersberg	AT	3	53. 7	15.0		5 3.5	3
			Feldkirchen	AT	3	54.0 57.0	13.6	14.4	5 6.0	3
			Pyhra Gerhaus	AT AT	3	36.1	17 .7	6.3 6.5	5 0.6	1
			Kujavy	CZ	3	63.3	1/./	5.3	0.00	3
			Chlumec	CZ	3	50.1	22.3		47.1	3
			Lucmierz	PL	3	47.0	22.3	6.5	# / · 1	2
			Kroscina Mala	PL	3	62.4		7.6		2
HR22_46	2022		Bozzai	HU	3	27.4		7.3		1
			Boly	HU	3	59.4		6.5		1
			Brno	CZ	3	47.1		5.2		3
			Przewloka	PL	3	3 7.9		7.1		2
			Wiski	PL	3	44.4		4.1		2
			Selommes	FR	3					1
			Rostock	DE	3	47.2		4.9		3
			Gerhaus	AT	3	3 9.3	1 6.6	7.0	5 1.2	1
			Reichersberg	AT	3	5 3.9	14.1		54.4	3
			Reichersberg	AT	3	58.8	1 5.0		5 3.3	3
HR22_48	2022		Feldkirchen	AT	3		13.1		5 4.1	3
			Pyhra	AT	3	58.5		7.6		4
			Gerhaus	AT	3		18.5		50.8	1
			Reichersberg	AT	3	_	13.9			3
HR22_53	2022		Feldkirchen	AT	3	49.5	<u>1</u> 4.8	11.9	33. I	3
			Pyhra Gerhaus	AT AT	3	55.β	17.1	6.7 6.7	50.2	4
			Reichersberg	AT	3		13.8			3
			Feldkirchen	AT	3		14.0			3
HR22_55	2022		Pyhra	AT	3	55. 6	<u> </u>	6.2		4
			Gerhaus	AT	3	39.5	16.9		50 .0	1

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Kornertrag	% Rohproteingehalt	% Erntefeuchte	% Ölgehalt	Untensität des Trockenstresses für die Kultur
			Reichersberg	AT	3	55. 6	13.9	11.0	5 2.7	
HR22_60 20)22		Feldkirchen	AT	3		13.9	11.3	52. 9	3
	,22		Pyhra	AT	3	5 9.0		6.6		4
			Gerhaus	AT	3	35.3	<u>18</u> .7	6.8	4 9.0	1
			Tandarei	RO	3	27.6		5.0		2
			Mako	НО	3	34.9		4.4		2
HR22_61 20)22	X	Nikitsch	AT	3	61.3		7.1	40.5	3
			Pyhra	AT	3	55. 3		5.7	48.5	4
			Reichersberg	AT	3	56.5		10.4	4 9.7	4
			Stánkov Nikitsch	CZ AT	3	48.3 63.4		4.9 10.0	48.7	3
HR22_64 20)22	X	Pyhra	AT	3	51.9		5.2	48.8	4
111122_04 20	,,,,	Λ	Reichersberg	AT	3	54.2		11.0	48.7	4
			Nikitsch	AT	3	64.4		9.2	49.3	3
HR22_65 20)22	X	Pyhra	AT	3	57.5		5.3	49.4	4
			Reichersberg	AT		56.1		10.9		4
			Nikitsch	AT	3	60.6		9.0	48.0	3
HR22_66 20)22	X	Pyhra	AT	3	5 4.3		5.1	48.3	4
			Reichersberg	AT	3	5 5.9		11.0	48.3	4
			Nikitsch	AT	3	61.8		7.3	4 8.6	3
HR22_67 20)22	X	Pyhra	AT	3	5 4.6		5.2	47.4	4
			Reichersberg	AT	3	5 4.3		10.9	48.8	4
			Nikitsch	AT	3	67.0		8.6	47.7	3
HR22_165 20)22	X	Pyhra	AT	3	5 1.6		5.1	4 8.6	4
			Reichersberg	AT	3	55. 8		11.1	48.4	4
HR22_167 20)22	X	Pyhra	AT	3	58.0		5.5	49.2	4
_			Reichersberg	AT	3	56.4			50.4	4
HR22_168 20)22	X	Pyhra	AT	3	57.6		5.6	<u>4</u> 8.8	4
			Reichersberg Tandarei	AT RO	3	5 4.2		10.4 5.3		2
			Mako	НО	3	25.3		4.2		2
			Nikitsch	AT	3	45.2		8.8		3
HR22_237 20)22	X	Pyhra	AT	3	50.3		5.8	45.4	4
			Reichersberg	AT	3	58.0			47.0	4
			Stánkov	CZ	3	52.0		5.2	. ,	4

Tabelle 51: Ausgewählte bonitierte Parameter vielversprechender Hybridraps-Zuchtlinien im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf den nächsten Seiten.

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Tage ab 1. Jän	Wuchshöhe	Reifebonitur früh	Reifebonitur spät	Jugendentwicklung (Herbstentwicklung)	Schossintensität (Frühjahrsentwicklung)	6- Mängel vor Winter	Mängel nach Winter	Lagerung früh	Lagerung spät	Intensität des Trockenstresses für die Kultur
			Kujavy	CZ	3	123	199					1.7	1.7		3.2	3
			Chlumec	CZ	3	119	150					2.7	3.0		1.0	3
			Lucmierz	PL	3											2
			Kroscina Mala	PL	3	117	173					1.1			1.3	2
			Bozzai	HU	3							2.3	3.0			1
			Boly	HU	3							1.0	1.2			1
HR22_2	2022	X	Brno	CZ	3							1.8				3
			Przewloka	PL	3							1.0		1.0		2
			Wiski	PL	3							1.0				2
			Selommes	FR	3							_				1
			Rostock	DE	3							1.7		1.0		3
			Gerhaus	AT	3	115	149		9.1	3.0	3.3	2.1	3.3		-	1
			Reichersberg	AT	3	109	170	9.0	3.5	4.1	1.7	4.2	4.4		1.3	3
			Reichersberg	AT	3	108	165	8.1	4.0	3.9	2.9	2.9	1.7	4.0	1.0	3
HR22_3	2022	X	Feldkirchen	AT	3	106	166	8.1	2.0	2.7	1.3	2.6	3.3	1.0	1.3	3
			Pyhra	AT	3	110	184	<u>6</u> .6	4.0	2.1	2.3	3.4	3.0	1.2	2.0	4
			Gerhaus	AT	3	113	150	9.0	2.3	3.5 4.8	3.7	4.5 1.3	1.8		1.0	3
			Reichersberg Feldkirchen	AT AT	3	106	161 162	8.0	2.0	3.1		1.5	2.4	1.0	1.0	3
HR22_5	2022	X	Pyhra	AT	3	100	183	6.7	4.6	0.9	4.8	2.1	2.4	3.2	3.5	4
			Gerhaus	AT	3	113	153	<u>U,</u> /	7.3	2.3	4.5	1.3	2.5	3.2	۷.,۷	1
			Reichersberg	AT	3	109	160	8.6	4.4	4.4		1.9	2.3 2.1		1.0	3
			Feldkirchen	AT	3	105	148	8.5	4.5	1.7	3.7	2.2	2.6	0.9	0.5	3
HR22_7	2022	X	Pyhra	AT	3	135	182	6.6	6.3	1.4	3.9	2.1	2.4	2.2	2.7	4
			Gerhaus	AT	3	114	151		7.9	2.7	6.0	2.9	3.5		· ·	1
			Reichersberg	AT	3	107	173	6.0	1.3	3.3		1.8	2.2		2.4	3
HR22_8	2022	X	Pyhra	AT	3		186	5.3	3.5	1.9	1.7	4.0	2.8	1.0	2.8	4
			Gerhaus	AT	3	114	165	_	6.3	3.5	1.7	4.1	3.0		1.0	1
			Reichersberg	AT	3	109	170	7.7	1.4		2.0	1.5	1.6		1.7	3
HR22_10	2022		Pyhra	AT	3		178	7.0	4.5	1.0	2.8	2.7	2.9	1.7	4.5	4
			Gerhaus	AT	3	116	155	_	7.7	1.5	2.3	1.5	2.0		1.0	1

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Tage ab 1. Jän	Wuchshöhe	Reifebonitur früh	Reifebonitur spät	Jugendentwicklung (Herbstentwicklung)	Schossintensität (Frühjahrsentwicklung)	6- Mängel vor Winter	Mängel nach Winter	Lagerung früh	Lagerung spät	Intensität des Trockenstresses für die Kultur
			Reichersberg	AT	3	111	171	7.4	2.1	4.8	4.6	1.4	2.0		1.0	3
HR22_35	2022		Feldkirchen	AT	3	109	168	7.5	2.8	3.0	4.4	2.6	3.4	1.3	1.8	3
11K22_33	2022		Pyhra	AT	3		192	6.2	4 .6	2.3	4.0	3.2	3.3	2.2	4.7	4
			Gerhaus	AT	3	115	159	_L _	7.0	2.7	5.1	3.1	3.7			1
			Reichersberg	AT	3	107	164	5.6	1.6	4.7	3.3	1.9	1.8	20	2.4	3
			Feldkirchen	AT	3	105	171	5 .8	1.3	3.6	4.7 3.5	2.1	3.3	2.0	3.3 4.7	3
			Pyhra	AT	3	114	181	4.2	2.8	2.2 2.4	3.5 4.1	3.2	2.6	3.2	4.7	4
			Gerhaus	AT CZ	3	11 ₄	161 198		6.1	4.4	4.1	1.6	2.6 1.3		3.8	3
			Kujavy Chlumec	CZ	3	118	153					2.3	2.3		1.0	3
			Lucmierz	PL	3	110	133					2.3	4.3		1.0	2
			Kroscina Mala	PL	3	117	180					1.0			1.3	2
HR22_46	2022		Bozzai	HU	3	111	100					2.3	3.7		1.5	1
			Boly	HU	3							1.0	1.7			1
			Brno	CZ	3							2.2				3
			Przewloka	PL	3							1.0		1.0		2
			Wiski	PL	3							1.0				2
			Selommes	FR	3											1
			Rostock	DE	3							2.6		1.0		3
			Gerhaus	AT	3	115	147	_	6.4	3.7	3.9	2.0	3.3			1
			Reichersberg	AT	3	108	168		1.7	3.9	3.3	1.9	1.6		2.0	3
			Reichersberg	AT	3	108	<u>1</u> 66	_	3.0		2.4	1.7	2.8		1.0	3
HR22_48	2022		Feldkirchen	AT	3	104	152		2.9	1.7	3.3	2.6	3.8	1.0	1.0	3
			Pyhra	AT	3	1 1 4		5.4	5.8	1.7	3.0	1.8	1.8	3.0	4.2	4
			Gerhaus Reichersberg	AT AT	3	114	150 157	6.7	6.7 2.7	2.4 3.6	5.6 2.6	1.0 0.9	2.5 1.1		1.3	3
			Feldkirchen	AT	3	106	153		2.6	4.5	2.9	3.5	4.5	1.1	1.5	3
HR22_53	2022		Pyhra	AT	3	104	173		3.3	1.7	4.8	2.0	2.3		1.5	4
			Gerhaus	AT	3	109	146	<u>"</u> ,	4.7	2.4	2.9	1.5	3.0	2. P	<u>∎</u> 1.J	1
			Reichersberg	AT	3	107	159	6.7	2.0		3.7	1.6	1.5		1.0	3
11044 55	2022		Feldkirchen	AT	3	105	150		1.8	2.3		2.0	3.6	1.7	2.4	3
HR22_55	2022		Pyhra	AT	3		178	4.7	3.4	2.6	2.5	2.9	2.3	2.7	4.9	4
			Gerhaus	AT	3	112	151		5.3		2.1	3.3	3.2			1

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Bighbeginn Tage ab 1. Jän	Wuchshöhe	Reifebonitur früh	Reifebonitur spät	Jugendentwicklung (Herbstentwicklung)	Schossintensität (Frühjahrsentwicklung)		Mängel nach Winter	Lagerung früh	Lagerung spät	Untensität des Trockenstresses für die Kultur
			Reichersberg	AT	3		151	66	2.4	5.1	1.9	1.8	1.6	. .	1.0	
HR22_60	2022		Feldkirchen	AT	3	102	154	6.0	1.8	2.2	1.4	2.4	3.5	1.3	2.3	3
			Pyhra	AT	3		176	5.6	3.7	1.9	1.2	3.1	3.0	3.2	2.3	4
			Gerhaus	AT	3	110	150		6.5	3.1	2.2	2.6	2.5			1
			Tandarei	RO	3	111	100	_			7.7	6.3	3.7			2
			Mako	НО	3	116	182	7.3				1.0	1.0	2.0		2
HR22_61	2022	X	Nikitsch	AT	3	110	163	7.7	4.3	4.3	4.3	3.3	2.0	1.0	1.0	3
_			Pyhra	AT	3	112	168	6.3	5.0	2.7	3.3	3.0	2.0	1.3	1.3	4
			Reichersberg	AT	3	104	147	8.3	2.3	3.0	4.3	1.3	2.0	1.7	1.0	4
			Stánkov	CZ	3	119	169	. .	5 0	O 45	1.0	1.0	1.0	1.0	4.0	4
HD22 (4	2022	3.7	Nikitsch	AT	3	110	165	6 .3	5.0	3.7	7.0	3.0	2.0	1.3	4.7	3
HR22_64	2022	X	Pyhra	AT	3	113	175	4.7	5 3	3.7	6.0	2.7	2.0	1.3	4.7	4
			Reichersberg	AT	3	106	163 177	7.7 6.7	3.0 5.7	4.3 3.7	5.0 3.7	2.0	2.7 2.0	1.0	2.0	4
HD22 65	2022	v	Nikitsch	AT	3	115	183	6.3	5.7 5.7	2.7	6.3	2.7	$\frac{2.0}{2.0}$	1.0	2.0	3
HR22_65	2022	X	Pyhra	AT	3	115		7.0	3.3	2.7	4.3			2.0	3.3 2.0	4
			Reichersberg Nikitsch	AT AT	3	110	168 168	7.0	4.7	3.3	6.0	3.0	2.3	1.0	4.0	3
HR22_66	2022	X	Pyhra	AT	3	112	173	6.7	5.3	3.7	6.7	3.0	2.3	1.3	2.7	4
11K22_00	2022	Λ	Reichersberg	AT	3	106	168	7.7	4.0	4.3	5.0	2.7	3.3	1.0	2.0	4
			Nikitsch	AT	3	100	170	6.0	3.7		2.7	3.0	2.0	1.0	4.0	3
HR22_67	2022	X	Pyhra	AT	3	110	167	5.7	4.3	3.3	3.7	3.0	2.0	1.0	2.7	4
11112_07	2022	11	Reichersberg	AT	3	106	162	7.7	2.7	3.3	4.0	1.7	1.7	1.0	1.3	4
			Nikitsch	AT	3	100	170	6.7	3.7	2.0	3.3	2.7	2.0	1.3	110	3
HR22 165	2022	X	Pyhra	AT	3	114	182	6.0	2.3	3.7	5.0	3.0	2.3	2.0	3.0	4
_			Reichersberg	AT	3	107	168	7.7	1.3	5.0	4.7	1.7	2.3	1.0	1.7	4
*******	2022		Pyhra	AT	3	111	173	5.7	5.3	2.7	4.7	3.0	2.0	1.3	1.7	4
HR22_167	2022	X	Reichersberg	AT	3	106	157	8.7	4.0	2.7	4.3	1.3	1.7	1.0	2.3	4
HD22 160	2022	X	Pyhra	AT	3	115	185	5.0	5.3	2.3	5.0	3.0	2.0	1.7	3.7	4
HR22_168	2022	Λ	Reichersberg	AT	3	107	160	8.3	3.7	2.3	5.3	2.3	2.7	1.0	1.3	4
			Tandarei	RO	3	104					7.0	5.0	2.3			2
			Mako	НО	3	115	173	5.0				1.0	1.0	2.0		2
HR22_237	2022	X	Nikitsch	AT	3		157	6 .3	<u>5</u> .0	4.7	5. 0	3.0	2.0	1.7		3
111144_431	2022	Λ	Pyhra	AT	3	116	190	6 .3	3.7	2.3	6.3	3.0	2.7	1.3	4.7	4
			Reichersberg	AT	3	111	178	7.3	1.7	1.3	4.3	1.7	2.3	1.0	1.3	4
			Stánkov	CZ	3	118	160				1.0	1.7	1.3	1.0	3.3	4

3.2.3 SONNENBLUME

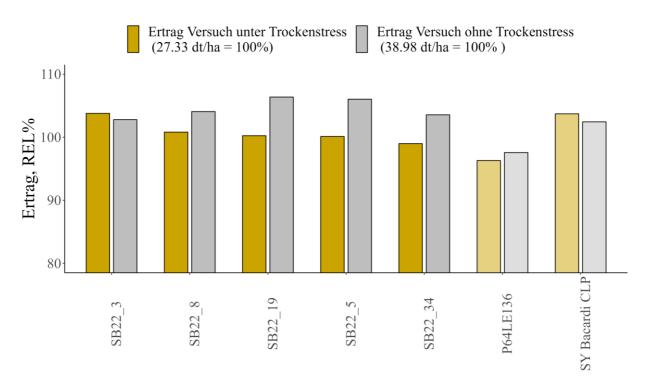


Abbildung 34: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der fünf im zweiten Projektjahr ertragreichsten Zuchtlinien der Sonnenblume und der Standardsorten *P64LE136* und *SY Bacardi CLP*.

Im zweiten Projektjahr wurden bei der Sonnenblume 10 Versuche an 6 unterschiedlichen Standorten angelegt. Davon befanden sich drei dieser Standorte in Österreich (Obersiebenbrunn, Mistelbach und Hollabrunn), zwei in Rumänien (Alexandria und Belciugatele) und einer in Ungarn (Bóly). Die Versuchsstandorte haben sich somit im Vergleich zum ersten Projektjahr 2021 kaum geändert, lediglich ein Standort in Rumänien wurde getauscht. Allerdings fiel der in 2022 beobachtete Trockenstress im Vergleich zu 2021 deutlich stärker aus. Alle drei österreichischen Standorte wurden vom versuchsbetreuenden Züchtungsunternehmen als Versuche eingestuft, bei denen ein mittlerer Trockenstress (Stufe 2) auf die angebauten Pflanzen einwirkte. Ebenfalls als Trockenstressversuch wurde der Versuch in Ungarn gewertet, an einem der rumänischen Versuchsstandorte lag sogar ein hoher Trockenstress (Stufe 1) vor. In Abbildung 34 sind die adjustierten mittleren Kornerträge der fünf ertragsstärksten Zuchtlinien wiedergegeben, sowie die als Brückensorten mit angebauten Standardsorten *P64LE136* und *SY Bacardi CLP* dargestellt.

Um in trockenen Vegetationsperioden, wie sie in Zukunft vermehrt zu erwarten sind, auch weiterhin ertragsstarke Sonnenblumen-Sorten anbauen zu können, ist eine Selektion auf hohen Kornertrag unter Trockenstress-Bedingungen unabdingbar. Aber auch weitere Eigenschaften sind ausschlaggebend für qualitativ hochwertige Sonnenblumen-Sorten und erklärte Zuchtziele. Daher erfolgte bei den durchgeführten Versuchen nach der Ernte der Parzellen eine zusätzliche Bonitur hinsichtlich der Qualitätseigenschaften, wie Erntefeuchte (Tabelle 52). Im Feld wurde unter anderem die Wuchshöhe, die Jugendentwicklung, die Reife, die Lagerung, der Mangel nach dem Aufgang, das Stängelknicken und Broken Head bonitiert (Tabelle 53). Alle diese erhobenen Parameter flossen in die finale Bewertung durch die versuchsleitenden Züchter:innen ein, und sind im Detail in den nachfolgenden Tabellen wiedergegeben. Im vergangenen Projektjahr wurden 5 aus dem Projekt KLIMAFIT entstammende Sonnenblumen-Zuchtstämme zur Wertprüfung angemeldet.

Tabelle 52: Ausgewählte bonitierte Parameter vielversprechender Sonnenblumen-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten.

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Kornertrag	% Erntefeuchte	Intensität des Trockenstresses für die Kultur
SB22_1	2022	X	Hollabrunn	AT	3	28.8	7.1	2
	2022		Mistelbach	AT	3		n	2
			Alexandria	RO	3		5.9	1
GD 44	2022	37	Belciugatele	RO	3	38.2	11.5	3
SB22_2	2022	X	Bóly	НО	3	36.2	8.8	2
			Hollabrunn	AT	3	28.6	7.6	2
			Mistelbach	AT	3	20.2		2
			Alexandria	RO	3	20.2	5.7	1
CD 22 2	2022		Belciugatele	RO		40.1	_	3
SB22_3	2022		Bóly	НО	3	37.3	6.8	2
			Hollabrunn Mistelbach	AT	3	<u>2</u> 9.4	819	2 2
			Alexandria	AT RO	3	18.7	5.8	1
			Belciugatele	RO	3	41.3	12.0	3
SB22_5	2022		Bóly	НО	3	36.5	7.4	2
SD22_3	2022		Hollabrunn	AT	3	28.5	9.3	2
			Mistelbach	AT	3	20.5). D	2
			Alexandria	RO	3	20.8	5.5	1
			Belciugatele	RO	3	40.6		3
SB22_8	2022		Bóly	НО	3	36.7	6.3	2
SD22_0	2022		Hollabrunn	AT	3	26.9	6.8	2
			Mistelbach	AT	3	20.5	0.0	2
			Alexandria	RO	3	21.8	5.7	1
			Belciugatele	RO	3	41.5		3
SB22_19	2022		Bóly	НО	3	34.2		2
			Hollabrunn	AT	3	27.9	_	2
			Mistelbach	AT	3			2
			Alexandria	RO	3	20.4	5.7	1
			Belciugatele	RO	3	40.4		3
SB22_34	2022		Bóly	НО	3	35.7		2
			Hollabrunn	AT	3	26.7	7.2	2
			Mistelbach	AT	3		_	2
			Hollabrunn	AT	3	29.9	6.7	2
SB22_57	2022	X			3			2
			Obersiebenbrunn	AT	3	30.9	8.7	2
SB22 50	2022	X	Hollabrunn	AT	3	22.6	6.4	2
SB22_58	2022	Λ	Mistelbach	AT	3			2
			Hollabrunn	AT	3	29 .6	7.2	2
SB22_59	2022	X	Mistelbach	AT	3			2
			Obersiebenbrunn	AT	3	29.8	8.5	2

Tabelle 53: Ausgewählte bonitierte Parameter vielversprechender Sonnenblumen-Zuchtlinien im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt.

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Bin 1-9	B Wuchshöhe	Jugendentwicklung	Reifebonitur I	Bon Reifebonitur II	P. Tagerung	Mängel nach Aufgang	Stängelknicken	Broken head	Head position	Intensität des Trockenstresses für die Kultur
		37	Hollabrunn	AT	3	1.0		2.7	4.7	2.7		1.7		1	4	2
SB22_1	2022	X	Mistelbach	AT	3		160	3.3	4.0						3	2
			Alexandria	RO	3		197			6.3	2.7	5.0	1.0	1	5	1
			Belciugatele	RO	3	4.3	195			7.0	2.3	5.0	1.0	1	7	3
SB22_2	2022	X	Bóly	НО	3	4.0	175		7.0	5.0	4.0			1	6	2
			Hollabrunn	AT	3	6.0	180	2.7	6.3	6.3	4.7	2.7		1	6	2
			Mistelbach	AT	3		173	3.3	6.0						6	2
			Alexandria	RO	3		188			6.3	1.3	3.0	1.0	1	4	1
			Belciugatele	RO	3	3.7	177			6.7	1.0	3.0	1.0	1	5	3
SB22_3	2022		Bóly	НО	3	4.7	168		6.0	5.0	1.0			1	4	2
			Hollabrunn	AT	3	6.0	175	2.0	6.0	5.0	2.3	1.7		1	4	2
			Mistelbach	AT	3		180	2.0	7.3						5	2
			Alexandria	RO	3		197			6.0	1.0	3.0	1.0	1	2	1
			Belciugatele	RO	3	4.3	185			6.0	1.3	3.0	1.0	1	2	3
SB22_5	2022		Bóly	НО	3	4.3	167		6.0	5.0	1.0			1	2	2
			Hollabrunn	AT	3	6.0		2.3	6.7	6.3	1.3	1.3		1	3	2
			Mistelbach	AT	3			3.0	6.3						2	2
			Alexandria	RO	3		17 0			6.0	1.7	2.7	1.0	4	2	1
			Belciugatele	RO	3	3.0	180			6.7	1.7	2.3	1.0	2	5	3
SB22_8	2022		Bóly	НО	3	4.0	175	_	4.7	4.0	2.7			1	2	2
			Hollabrunn	AT	3	5.7		2.0	4.7	2.7	1.0	1.0		5	3	2
			Mistelbach	AT	3		180	1.0	4.0						3	2
			Alexandria	RO	3		<u>17</u> 0			6.7	1.0	3.0	1.0	1	5	1
			Belciugatele	RO	3	5.7	<u>17</u> 2			6.7	1.0	3.0	1.0	2	8	3
SB22_19	2022		Bóly	НО	3	5.0	152		6.0	5.0	1.3			1	6	2
			Hollabrunn	AT	3	5.3	160	4.3	7.3	5.3	1.0	1.0		4	7	2
			Mistelbach	AT	3		-	3.7	4.7						6	2
			Alexandria	RO	3		<u>17</u> 2			6.3	3.3	3.7	1.0	1	5	1
GD 44 4 :	2022		Belciugatele	RO	3	3.3	172			6.7	1.0	3.0	1.0	1	5	3
SB22_34	2022		Bóly	НО	3	4.0	162		6.3	5.3	2.7			1	4	2
			Hollabrunn	AT	3	5.3	168		6.7	4.7	1.3	2.3		1	4	2
			Mistelbach	AT	3		163		4.7					n -	2	2
GD 45 ==			Hollabrunn	AT	3	4.7		4.0	6.7	5.3	1.0	1.0		2	3	2
SB22_57	2022	X	Mistelbach	AT	3	4.5	172		5.7	7 0		-	10		4	2
			Obersiebenbrunn	AT	3		140		5.0	5.0	1.0	2.7	1.0	2	3	2
SB22_58	2022	X	Hollabrunn	AT	3	6.0		3.7	7.7	6.0	1.0	1.3	-	1	4	2
			Mistelbach	AT	3		173		5.7		1.0	1. -			3	2
GDAS TO	2022		Hollabrunn	AT	3	6.3	<u>17</u> 0		8.0	7.3	1.0	1.7		2	5	2
SB22_59	2022	X	Mistelbach	AT	3		160		6.0				10		6	2
			Obersiebenbrunn	AT	3	5.7	128	7.3	6.3	6.3		3.7	1.0	1	5	2

3.2.4 ÖLKÜRBIS

Der Ölkürbis ist als Grundlage für die Produktion des Kürbiskernöls eine sehr beliebte heimische Kulturart welche durch jahrelange Züchtungsarbeit gut an den österreichischen Standort angepasst wurde. Dennoch ist auch bei dieser wärmeliebenden Kulturart bei fortschreitendem Klimawandel im Trockengebiet mittel- bis langfristig mit Ertragseinbußen zu rechnen. Vorausschauend ist daher die Verbesserung der Trockenstresstoleranz auch beim Ölkürbis ein erklärtes Zuchtziel im Projekt KLIMAFIT 2. Im ersten KLIMAFIT 2 Projektjahr 2021 wurde der Ölkürbis an vier ausschließlich österreichischen Standorten in 30 Versuche gestellt. Dieselben Versuchsstandorte wurden auch im zweiten Projektjahr 2022 beibehalten, auch wurden wieder 30 Versuche bei dieser Kulturart angelegt.

Im vergangenen Projektjahr waren die Standorte Gleisdorf und Vogau in der Südsteiermark geprägt durch ein mildes, wüchsiges Frühjahr, mit einer ausreichenden Niederschlagsversorgung. Die Jugendentwicklung war kräftig und rasch und führte zu einer recht frühen Blüte und Fruchtentwicklung, noch vor dem Einsetzen des heißen und trockenen Sommers. So konnte trotz des Rekordsommers in der Steiermark Spitzenergebnisse in den Ölkürbis-Kornerträgen erzielt werden. Durch die wüchsigen Bedingungen war das Auftreten von Viruserkrankungen und Fruchtfäuleerregern untergeordnet. Dennoch zeigten anfällige Genotypen zur Ernte charakteristische Fruchtsymptome, was in die Selektion miteinbezogen wurde. Der niederösterreichische Standort Großnondorf war deutlich stärker durch die Trockenheit beeinträchtigt und wurde auch durch verstärkten Sonnenbrand an den Früchten etwas beeinträchtigt. Hier wurde die Intensität des Trockenstresses auf den Ölkürbis vom die Versuche an diesem Standort betreuenden Züchtungsunternehmen mit der höchsten Stufe 1 bewertet.

Im Projekt wird der Ölkürbis hinsichtlich frei abblühender- und Hybrid-Sorten-unterschieden, dementsprechend sind die statistisch ausgewerteten Ergebnisse der Parzellenversuche hier im Zwischenbericht getrennt wiedergegeben. Bei den Hybridsorten-Versuchen wurden wie schon im Vorjahr *GL Rudolf*, sowie *GL Rustikal* als Standardsorten mit angebaut (Abbildung 35), im frei abblühenden Sortiment (Abbildung 36) wurden die Standardsorten *Gleisdorfer Ölkürbis* und *GL Ruprecht* verwendet. Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien des Hybridsorten-Ölkürbisses im ersten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten sind in Tabelle 54 wiedergegeben, ausgewählte bonitierte Parameter vielversprechender Zuchtlinien zur Feststellung ihres Verhaltens in der Umwelt in Tabelle 55. Dieselben Informationen sind für den frei abblühenden Ölkürbis der Tabelle 56 und der Tabelle 57 zu entnehmen. Hier ist vor allem das Ölgehalt bei dieser Kulturart ein wichtiges Qualitätskriterium.

Aufgrund der zum Teil auftretenden Blattwelke und Notreife konnte beim Hybrid-Ölkürbis gezielt hinsichtlich Trockenstresstoleranz bonitiert und selektiert werden. Trotz der zum Teil trockenen Wuchsbedingungen war das Ertragsniveau auf allen Standorten sehr hoch. Das hohe Ertragsniveau lässt sich mitunter durch den geringen Fäulnisdruck und auch durch eine sehr gute Kornausprägung erklären. Essentiell war vermutlich das warme und sehr wüchsige Frühjahr mit einer ausreichenden und guten Niederschlagsverteilung, wodurch kräftige Pflanzen mit bereits ausgebildeten Früchten gut durch die heißen Sommermonate kamen. Die Trockenheit minimierte zudem eine Spätverunkrautung und Fruchtfäule. Die Bonituren hinsichtlich Jugendentwicklung, Virusbefall, Abreifeverhalten, Fruchtfäuleentwicklung, gleichmäßiger Fruchtabreife und Virusbefall der Frucht zeigten entsprechend der Standorte eine differenzierte Ausprägung. Aus den Prüfserien wurden zwei Hybridsorten zur Wertprüfung in Österreich angemeldet. Beim frei abblühenden Ölkürbis hatten die Zuchtlinien hingegen sehr zu kämpfen. Hier konnte im vergangenen Jahr lediglich ein Stamm identifiziert werden, welcher mit höheren Erträgen als die Standardsorten aufwarten konnte *Gleisdorfer Ölkürbis* und *GL Ruprecht*. Hier erfolgte noch keine Anmeldung zur Wertprüfung.

3.2.4.1 <u>Hybrid-Ölkürbis</u>

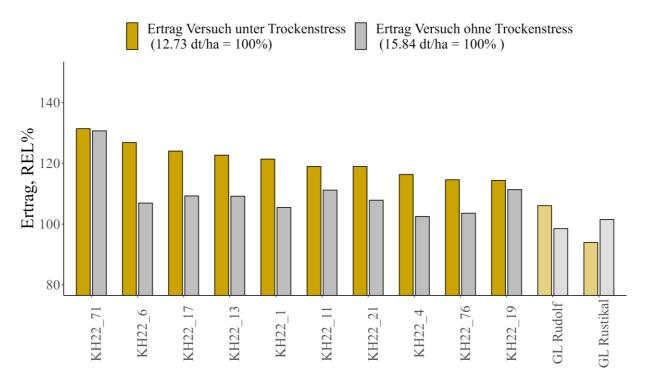


Abbildung 35: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten Zuchtlinien des Hybridsorten-Ölkürbisses und der Standardsorten *GL Rudolf* und *GL Rustikal*.

Tabelle 54: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien des Hybridsorten-Ölkürbisses im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten.

Name	Jahr	WP	Standort	Land	Parzellenanzahl	dt/ha	% Erntefeuchte	% Ölgehalt	Tausendkorngewicht	Untensität des Trockenstresses für die Kultur
			Gleisdorf	AT	2	<u>16</u> .0			228. 0	
KH22_1	2022		Vogau	AT	2	20.7	0.4		<u>209</u> .3	2
			Großnondorf		2	10.2			180.0	1
			Gleisdorf	AT	2	15 .5			226. 3	3
KH22_4	2022		Vogau	AT	2	17. 6	0.4		218.3	2
			Großnondorf	_	2	12.0			199.0	1
			Gleisdorf	AT	2	16.2			232. 3	3
KH22_6	2022		Vogau	AT	2	21.4	0.4		238.5	2
			Großnondorf	AT	2	10.9	.		197.0	1
Y/Y/00 11	2022		Gleisdorf	AT	2	_	0.4	51.4	222.0	3
KH22_11	2022		Vogau	AT	2		0.4	47.7	221 8	2
			Großnondorf	AT	2	11.0	h 4	<u>4</u> 8.7	234.5	1
171100 10	2022	37	Gleisdorf	AT	2	16.6		52.4	232.5	3
KH22_13	2022	X	Vogau	AT	2		<u>0</u> .4	48.5	239.0	2
			Großnondorf	AT	2	11.1	0.4	<mark>4</mark> 8.6	251.3	1
VIIO 17	2022		Gleisdorf	AT	2	16.6 20.7			225.3 198.5	3
KH22_17	2022		Vogau	AT			0.4			2
			Großnondorf		2	10.9 16.9	0 4		186.8 247.3	1
KH22 19	2022		Gleisdorf Vogau	AT AT	2	20.5			247.3 243.8	2
131122_19	2022		Vogau Großnondorf		2	8.6	<u>U</u> .4		209.0	1
			Gleisdorf	AT	2	16.3	0 4		197.3	3
KH22_21	2022		Vogau	AT	2	20.3			199.0	2
			Großnondorf	_	2	10.0	<u>∪.</u> π		184.0	1
			Gleisdorf	AT	2	_	0.4	48.0		3
KH22_71	2022		Vogau	AT	2				226.0	2
*****	2022		Gleisdorf	AT	2	_	0.4			3
KH22_76	2022		Vogau	AT	2				226. 0	2
1/11/20 1/20	2022	37	Gleisdorf	AT	2	18.3				3
KH22_142	2022	X	Wollsdorf	AT	2	21.4	0.4		161.0	3

Tabelle 55: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien des Hybridsorten-Ölkürbisses im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt.

Name Jahr Standort Land Parzellenanzahl Parzellenanzahl Jugendentwicklung	b Ist-Fruchtzahl	B Anzahl kleiner Früchte	Reifebonitur Datum 1	Reifebonitur Datum 2	Virosen		□ Anzahl fauler Früchte bei Ernte	Relativer Anteil fauler Früchte bei Ernte	Intensität des Trockenstresses für die Kultur
Gleisdorf AT 2 1.0	79	1	6 .0	4.5	-	5 .0	2	2.6	3
KH22_1 2022 Vogau AT 2 1.5	100	1	4.0	=	2.5	5 .5	5	4. 9	2
Großnondorf AT 2	49	1		2.5			1	2.1	1
Gleisdorf AT 2 1.5	57	1	6. 0		3 .0		0	0.0	3
KH22_4 2022 Vogau AT 2 1.5	71	1			2.0	5 .5	3	<u>3</u> .6	2
Großnondorf AT 2	40	1	_	3.0		_	0	0.0	1
Gleisdorf AT 2 1.0	53	0			2.3		0	0.0	3
KH22_6 2022	66	1		3.5	2.0	4.0	3	<u>3</u> .8	2
Großnondorf AT 2	40	1	7.0	2.0			0	0.0	1
Gleisdorf AT 2 1.0	69	1			2.5		2	2.9	3
KH22_11 2022 Vogau AT 2 1.5	80	0	2.5		2.8	8.0	7	8.8	2
Großnondorf AT 2	42	0	7.0	3.0	b -		1	2.4	1
Gleisdorf AT 2 1.0	59	0	_	_	2.5		1	1.7	3
KH22_13 2022 X Vogau AT 2 2.0	73		3.5	_	2.0	6. 5	5	6.2	2
Großnondorf AT 2	39	0	7. 5	3.0		1.0	0	0.0	1
Gleisdorf AT 2 1.0	62	1	4.5		3.0		3	5.1	3
KH22_17 2022	82		3.0		2.0	7.5		<u>5.</u> 5	2
Großnondorf AT 2 Gleisdorf AT 2 1.0	55	0	<u>7.ψ</u> 5 .5	3.5	20	ŀο	2	0.0 2.7	3
	66		3.5				2	2.2	2
KH22_19 2022 Vogau AT 2 1.5 Großnondorf AT 2	36	0		2.0	2.0	<u>7.Ψ</u>	1	1.4	1
Gleisdorf AT 2 1.0	81	2			3.5	4.5	2	1.9	3
KH22_21 2022 Vogau AT 2 1.0	99	1	=	_	2.5		2	1.5	2
Großnondorf AT 2	44	0	8.5	=	4 .5	. U.		1.1	1
Gleisdorf AT 2 1.0	83	0	=	_	2.0	4.0	3	3.6	3
KH22_71 2022 Vogau AT 2 2.0	86		3.0	_	2.0	7.5	1	1.2	2
Gleisdorf AT 2 10	62		6.0		3 O		5	8.1	3
KH22_76 2022 Vogau AT 2 2.5	73	1	4.0		<u>■</u> .∪	7.0	4	5.5	2
Gleisdorf AT 2 1.0	80		3.5	_	2.0		0	0.0	3
KH22_142 2022 X Wollsdorf AT 2 1.0	97		6.5				4	3.6	3

3.2.4.2 Frei abblühender Ölkürbis

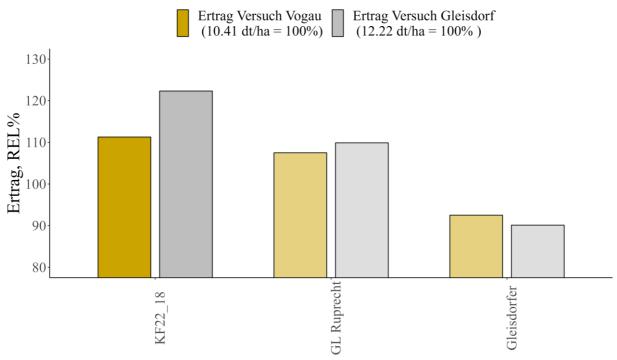


Abbildung 36: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der im zweiten Projektjahr ertragreichsten Zuchtlinie des frei abblühenden Ölkürbisses und der Standardsorten *GL Ruprecht* und *Gleisdorfer Ölkürbis*.

Tabelle 56: Ausgewählte erhobene Parameter der vielversprechendsten Zuchtlinie des frei abblühenden Ölkürbisses im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten.

Name	Jahr	Standort	Land	Parzellenanzahl	th/ha	% Erntefeuchte	% Ölgehalt	Tausendkorngewicht	Intensität des Trockenstresses für die Kultur
VE22 10	2022	Gleisdorf	AT	2	14.9	0.4	47.4	213	3
KF22_18	2022	Vogau	AT	2	11.6	0.4	46.3	209	2

Tabelle 57: Ausgewählte erhobene Parameter der vielversprechendsten Zuchtlinie des frei abblühenden Ölkürbisses im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt.

Name	Jahr	Standort	and	Parzellenanzahl	Jugendentwicklung	Ist-Fruchtzahl	Anzahl kleiner Früchte	Reifebonitur Datum 1	Reifebonitur Datum 2	Virosen	Blattnekrosen	Anzahl fauler Früchte bei Ernte	Relativer Anteil fauler Früchte bei Ernte	Intensität des Trockenstresses für die Kultur
Ž	Ja	$\mathbf{s}_{\mathbf{t}}$	$\Gamma_{\mathcal{E}}$	$\mathbf{P}_{\mathbf{a}}$	Bon.1-9	n	n		Bon	.1-9		n	%	In Tr Kı
VE22 10	2022	Gleisdorf	AT	2	1.5	78		6.0	3.5	1.8	5.0	4	4.6	3
KF22_18	2022	Vogau	AT	2	4.0	61	2	6.5	5.5		4.0	1	1.5	2

3.2.5 ACKERBOHNE

Im Projekt KLIMAFIT 2 wird ein Teil des untersuchten Ackerbohnenmaterials als Winterung, der andere Teil als Sommerung angebaut. Durch eine Aussaat Mitte Oktober wird die Winter- und Frühjahrsfeuchte optimal ausgenutzt, ein deutlicher Entwicklungsvorsprung gegenüber der Sommerackerbohne im Frühjahr und Frühsommer ist je nach Witterungsverlauf zu erwarten. Eine mögliche Dürreperiode in den Sommermonaten würde die Winterackerbohne so mit geringeren Ertragseinbußen überstehen. Milde Winter, mit welchen in Zukunft vermehrt zu rechnen ist, begünstigen die Entwicklung der Winterackerbohne, welche allgemein als anfällig für Auswinterungen gehalten wird.

Insgesamt wurden für die Ackerbohne im vergangenen Projektjahr 21 Versuche an 10 verschiedenen Standorten – 5 in Deutschland und 5 in Österreich – angelegt. Knapp die Hälfte der Versuche waren dabei Trockenstress-Versuche. Ein Versuch wurde mit der höchsten Trockenstress-Intensität (Stufe 1) bewertet, 9 der Versuche mit der mittleren Trockenstress-Intensität (Stufe 2), an 10 Versuchen trat ein niedriger Trockenstress (Stufe 3) auf. An einem Versuch wurde über die gesamte Vegetationsperiode hinweg kein Trockenstress für die Pflanzen (Stufe 4) vermeldet. Wurde in den vergangenen Projektjahren noch Versuchsstandorte in England verwendet, so wurden diese nun gestrichen. Stattdessen wurden zwei weitere neue Standorte in Deutschland (Biendorf und Boldebuck) etabliert, die sich beide durch Hitze- und Trockenstress während der Blüte auszeichneten.

Im zweiten Projektjahr wurden bei der Sommerackerbohne fast doppelt so viele Prüfparzellen angelegt wie bei der Winterackerbohne. Sowohl bei der Sommerackerbohne als auch bei der Winterackerbohne wurden je 2 Kandidaten zur Wertprüfung angemeldet.

3.2.5.1 Sommerackerbohne

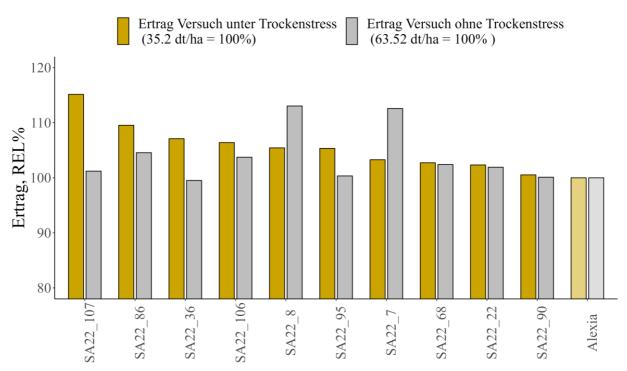


Abbildung 37: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten Zuchtlinien der Sommerackerbohne und der Standardsorte Alexia.

Bei der Sommerackerbohne wurden im Jahr 2022 Prüfparzellen auf neun unterschiedlichen Prüfstandorten gesät. Die Vegetationsperiode der Sommerackerbohnen war an 6 von 9 Standorten durch eine heiße und trockene Phase zum Zeitpunkt der Blüte und Hülsenausbildung geprägt. Anhand der ermittelten Erntegewichte respektive Ertragsdaten kann damit auf Hitze- und Trockenheitstoleranzen in einzelnen Stämmen geschlossen werden. Hier stachen einige Zuchtstämme hervor, welche sich gegenüber der mitangebauten Standardsorte *Alexia* vor allem in den Trockenstress-Versuchen ertragsreicher präsentierte (Abbildung 37). Interessanterweise zeigte sich erneut bei dieser Kulturart ein sehr starkes Nord-Süd-Gefälle im Ertrag. Auf den beiden Norddeutschen Standorten konnte im mehrortigen Versuch ein maximales Ertragsniveau in den Prüfgliedern von 10,2 t/ha in Hohenlieth und 9,1 t/ha in Cuxhaven erzielt werden, wohingegen sich das maximale Ertragsniveau im Süden Deutschlands und in Österreich bei 5 – 6 t/ha einpendelte.

Neben dem Ertrag sind insbesondere die Inhaltsstoffe des Ernteguts und die Anfälligkeit für Viruserkrankungen bei dieser Kulturart relevant (Tabelle 58). Folglich wurde im Sommerackerbohnen-Zuchtmaterial in Entwicklung und in den Prüfungen von 66 Proben die Rohproteingehalte ermittelt, welche eine Schwankungsbreite von 24,3 % bis 31,9 % in den Prüfstämmen zeigten. Alle Top-10-Genotypen im Proteingehalt waren weißblühend, was für eine weitere Züchtung in diesem Segment spricht. Zusätzlich zur Bestimmung des Rohproteingehalts wurde eine spektrophotometrische Methode zur Messung des Vicin/Convicin-Gehalts angewendet. Dies ermöglicht es, früher im Züchtungsprozess Linien mit reduziertem Vicin/Convicin-Gehalt zu identifizieren und diese gezielter voranzutreiben. Im Zuchtmaterial (AP1) wurden 216 Messungen durchgeführt und es konnten bereits mehrere Linien mit niedrigem Vicin/Convicin-Gehalt identifiziert werden.

Während auf den deutschen Standorten keine Virussymptome auftraten, konnte auf den österreichischen Standorten diesbezüglich gut zwischen den Genotypen differenziert werden. Andere Blattkrankheiten traten in den Prüfungen nur wenig ausgeprägt auf.

Tabelle 58: Ausgewählte bonitierte Parameter vielversprechender Sommerackerbohnen-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf den nächsten Seiten.

ne	ľ		Standort	pi	Parzellenanzahl	Kornertrag	Erntefeuchte	Tausendkorngewicht	Rohproteingehalt	Jugendentwicklung	Blühbeginn Tage ab	Wuchshöhe	Gesamteindruck	Reifebonitur	Lagerung	Virusbefall	Schokoladen flecken krankheit Botrytis	Intensität des Trockenstresses für die Kultur
Name	Jahr	WP	Staı	Land		dt/ha	%	g TM	%	Bon.1-9	Aussaat	cm			on.1	-9		Int
			Boldebuck	DE	3	15.5						88	2.3		1.0			2
		X	Hohenlieth	DE	1	90.0	<u>14</u> .5	522		1.0	67	135			1.0			3
SA22_7			Niedertraubling	DE	3	47 .9				1.7	74	133	1.0	3 .7			2.7	2
			Wurster			24.0												
	2022		Nordseeküste	DE	3	81.0	13.4					1.0						4
			Biendorf	DE	3	do 0		100		2.0	66	63	1.0	40		.		1
			Gleisdorf	AT	3	30.2		498		1.7	65	122	1.3	4.3		2 .7		2
			Hagenberg im	A.T.	2	10 (1.5 1			1.7	70	9.5	- A		2 2	1.0		2
			Mühlkreis	AT	2	43.6 31.1	15.1		20.5	1.7	72	85 95	5.0	2.5		1.0		3
			Oberdorf	AT	_	13.2			28.5	2,8	58	9p 85		3.0	2.0	2.0		2
	2022		Boldebuck Hohenlieth	DE DE	1	78.6	144	510		2.0	67	130	2.0	5.0 5.0				3
			Niedertraubling		1	52.0	14.4	310		1.0	73	120	2.0	_	1.0		3.0	_
			Wurster	DE	1	<u>54</u> .0				1.0	13	12Ψ	2.0	ρ.υ			J.U	
			Nordseeküste	DE	1	85.3	13 8											4
SA22_8			Biendorf	DE	1	05.5	1 3.6			3.0	66	75						1
			Gleisdorf	AT	3	33.6				1.5	65	118	1.0	3.3		2.0		2
			Hagenberg im	711		53.0				1.3	0.0		1.0	D.J		۷.0		
			Mühlkreis	AT	1	5 1.5	14.8			1.0	72	80	5.0		3.0	1.0		3
			Oberdorf	AT		28.8	11.0			2.8	57	98		3.0	3.5			2
			Boldebuck			10.1						97						2
			Hohenlieth	DE	3		14.2	561		1.3	66	138		5.0				3
			Niedertraubling	DE	3	43.8				1.7	70	130		4.7			1.7	2
			Wurster															
SA22_22	2022		Nordseeküste	DE	3	81.7	13.3											4
			Biendorf	DE	3					4.0	60	55						1
			Gießhübel	AT	3	56 .8	13.8			2.3	61	142		6.3				2
			Gleisdorf	AT	1	45.1				1.0	57	130				1.0		2
			Oberdorf	AT	2	2 4.3				2.3	53	108	3.0	2.5	1.0	4.8		2

Name	ı		Standort	pu	Parzellenanzahl	Kornertrag	Erntefeuchte	Tausendkorngewicht	Rohproteingehalt	Jugendentwicklung	Blühbeginn Tage ab	Wuchshöhe	Gesamteindruck	Reifebonitur	Lagerung	Virusbefall	Schokoladenfleckenkrankheit Botrytis	Intensität des Trockenstresses für die Kultur
Na	Jahr	WP		Land		dt/ha	%	g TM	%	Bon.1-9	Aussaat	cm			on.1	-9		
			Boldebuck	DE	3	14.4	17.1	3 21		—		8 3	3.0		1.7			2
	2022		Hohenlieth	DE	3	67.7	15.1	521		2.3	67	127	1.7		1.0		00	3
			Niedertraubling Wurster	DE	3	47.3				1.3	74	133	1.7	4.0			2.0	2
			Nordseeküste	DE	3	77.1	13.4											4
SA22_27		X	Biendorf	DE	3	//.1	13.4			4.0	66	50						4
SA22_21		Λ	Gießhübel	AT	3	52 .9	13.8			2.7	61	137		6.7				2
			Gleisdorf	AT	3	22.8	13.6	511		2.3	65	123	1.3			2.3		2
			Hagenberg im	AI	5	22.0		J11		1	0.0	123	1.5	.0		د.ب		
			Mühlkreis	AT	3	42.4	15 1			2.0	72	88	4.7		5 7	1.0		3
			Oberdorf	AT	4	22.3	10.1		28.6		57	100		8.5	4.0			2
	2022		Boldebuck	DE	1	6.4			20.0	5.0		70			1.0	0		2
			Niedertraubling	DE	1	49.8				2.0	69	130	3.0				1.0	2
			Biendorf	DE	1					4.0	62	50						1
SA22_36			Gleisdorf	AT	1	42.8				1.5	60	125	1.0	4.0		1.0		2
			Hagenberg im			I				_								
			Mühlkreis	AT	1	37.2	14.3			1.0	70	75	4.0		1.0	1.0		3
			Oberdorf	AT	2	30.9				3.3	55	105	1.5	2.5	1.5	3.0		2
			Boldebuck	DE	1	10.1						80	1.0	3.0	1.0			2
			Niedertraubling	DE	1	47.3				1.0	73	115	4.0	4 .0			1.0	2
			Biendorf	DE	1					4.0	67	60						1
SA22_68	2022		Gleisdorf	ΑT	1	40.2				1.5	62	115	1.0	4 .0		7.0		2
			Hagenberg im															
			Mühlkreis	AT		3 9.0	14.3			3.0	72	70			1.0			3
			Oberdorf	ΑT	2	2 6.2				4.5	56	98	2.5	2.8	1.0	6.5		2
			Hagenberg im															
SA22_86	2022		Mühlkreis	AT	1		1 4.0			1.5	74	<u>9</u> 5	2.0	1		1.0		3
			Oberdorf	AT	2	27.8				3.3	58				1.5	4 ,0		2
			Boldebuck	DE	1	8.7				1.0	ر ا	85			1.0	1.0		2
G 4 22 .00	2022		Gleisdorf	AT	1	38.2				1.0	<u>6</u> 4	115	1.0	4.0		1.0		2
SA22_90	2022		Hagenberg im	A 7T	1	27.6	1.4.0			2.0	72	00	<i>5</i> 0		ا م	1.0		2
			Mühlkreis Oberdorf	AT	2	37.6	14.9			2.0	73	8 0 10 0			2.0			2
-				AT	2	25.7				2.8	58	100	4.0	U. U	۷.0	د.و		2
SA22 05	2022		Hagenberg im Mühlkreis	AT	1	3 7.7	115			1.0	67	8 0	2.0		1.0	1.0		2
SA22_95	2022		Oberdorf	AT		26.3	1413			1.0	67 52	\$ 0		25	1.0			2
			Oberdori	ΑI	2	40.5	<u> </u>			4.5	53	93	3.0	2.5	1.0	J.U		Z

Name	Jahr	WP	Standort	Land	Parzellenanzahl	Kornertrag	% Erntefeuchte	Tausendkorngewicht	% Rohproteingehalt	Jugendentwicklung Bou-1-9	Tage ab Aussaat	Wuchshöhe Wuchshöhe	Gesamteindruck	Reifebonitur	Lagerung	Virusbefall	Schokoladenfleckenkrankheit Botrytis	Intensität des Trockenstresses für die Kultur
	-		Biendorf	DE	1					2.0	62	45						1
			Gleisdorf	AT	1	43.0				1.5	60	110	1.0	6 .0		2.0		2
SA22_106	2022		Hagenberg im Mühlkreis	АТ	1	3 9.9	15.3			1.0	70	8 0	6.0		1.0			3
			Oberdorf	AT	2	20.1				3.0	54	10 0	4.0	2.5	1.0	5.5		2
SA22_107	2022		Hagenberg im Mühlkreis	AT	1	38.3	14.7			2.0	70	85	5.0		1.0	1.0		3

3.2.5.2 Winterackerbohne

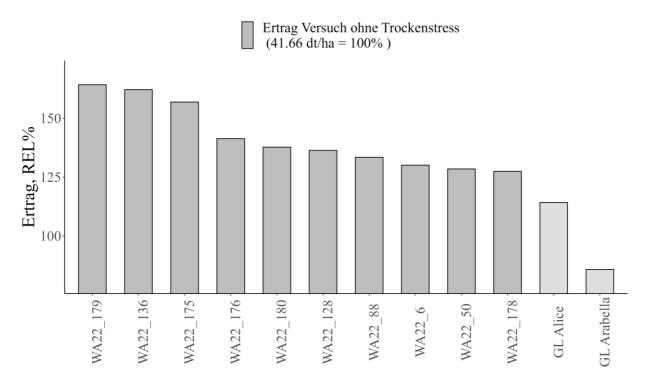


Abbildung 38: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten Zuchtlinien der Winterackerbohne und der zwei Standardsorten *GL Alice* und *GL Arabella*.

Bei der Winterackerbohne wurden in der Saison 2021/2022 Prüfparzellen auf zwei Prüfstandorten (Hagenberg und Oberdorf, beide in Österreich) angelegt. An beiden Standorte trat kein ausgeprägter Trockenstress auf, sodass hier nicht zwischen Trockenstress-Versuch und Versuch unter Normalbedingungen differenziert werden konnte. Zwar gab es phasenweise eine heiße und trockene Periode zur Blüte auf den Standorten, dennoch konnten viele Genotypen gute Erträge erzielen. Einige Zuchtlinien taten sich dennoch ertragsmäßig gegenüber den mitangebauten Standardsorten *GL Alice* und *GL Arabella* hervor (Abbildung 38). Neben dem Ertrag wurde natürlich auch bei der Winterackerbohne hinsichtlich ihres Verhaltens in der Umwelt bonitiert, sowie die Qualitäten erhoben (Tabelle 59). Am Prüfstandort in Hagenberg differenzierten die Genotypen deutlich hinsichtlich Winterhärte, am Standort in Oberdorf wurden keine Auswinterungsschäden festgestellt. Aufgrund der gut entwickelten Bestände in Hagenberg und Oberdorf konnten zahlreiche Parameter gut zwischen den Genotypen differenzierend bonitiert werden. Eine Bonitur hinsichtlich Auswinterungsschäden (Winterackerbohne) war nur in Hagenberg notwendig, andere Bonituren wie Jugendentwicklung, Blühbeginn, Wuchshöhe, Lagerung und Abreifeverhalten konnten somit gut durchgeführt werden. Es zeigten sich zum Teil deutliche Unterschiede zwischen den Prüfstämmen.

Bei einem durchgeführten Vergleich der durchschnittlichen Virus-Bonitur-Note von Winter- und Sommerackerbohne über alle Versuche auf den Standorten in Oberdorf zeigt sich, dass Winter-Ackerbohnen generell um beinahe 2 Noten weniger Virussymptome zeigten als Sommerackerbohnen. Dies ist vermutlich darauf zurückzuführen, dass die Infektion mit dem Virus zwar zum gleichen Zeitpunkt im Frühjahr erfolgte, sich die Winterackerbohnen zu diesem Zeitpunkt aber bereits in einem fortgeschrittenen Entwicklungsstadium befanden.

Sowohl bei der Winterackerbohne als auch bei der Sommerackerbohne wurden Analysen zum Rohproteinund Vicin/Convicin-Gehalt durchgeführt. Auch das Vorhandensein von Tanninen wurde im Zuchtmaterial erfasst. Beim Winterackerbohnen-Zuchtmaterial in Entwicklung und in den Prüfungen wurden von 44 Proben die Rohproteingehalte ermittelt, welche eine Schwankungsbreite von 22,0 bis 28,9 % in den Prüfstämmen zeigten. Diese Informationen sind wichtige Entscheidungsgrundlagen für die weitere Züchtung zur Erhöhung des Proteingehaltes in Winterackerbohnen Durch diese unverzügliche Messung des Vicin/Convicin-Gehaltes der Ackerbohnen im Zuchtmaterial konnten im Jahr 2022 selektierte Vicin/Convicin-reduzierte Genotypen gezielt in den Winterzuchtgarten 2022/2023 gestellt und so deren Entwicklung vorangetrieben werden.

Tabelle 59: Ausgewählte bonitierte Parameter vielversprechender Winterackerbohnen-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter zur Feststellung ihres Verhaltens in der Umwelt.

Umwelt.			1														
Name	ır	C	Standort	Land	Parzellenanzahl	Kornertrag	% Erntefeuchte	Rohproteingehalt	Jugendentwicklung	Blühbeginn Tage ab	Wuchshöhe	Gesamteindruck	Reifebonitur	Lagerung	Virusbefall	Auswinterung (Winterschaden, Winterackerbohne)	Intensität des Trockenstresses für die Kultur
Ž	Jahr	WP	_		1	dt/ha	70	%	Bon.1-9	Aussaat	cm						
			Oberdorf	AT	3	63.49			3.0	193	132	3.0	7.0	3.7	2.0		3
WA22_6	2022		Hagenberg im Mühlkreis	AT	3	44.92	13.5		2.0		90	4.3	6.0	4.0	1.3	2.7	3
			Oberdorf	AT	3	59.21		27.6	4.3	199	110	2.0	4.0	3.0	3.3		3
WA22_28	2022	X	Hagenberg im														
			Mühlkreis	AT	3	29.54	12.7	26.3	2.3		73	4.0	1.3	2.3	1.3	2.8	3
WA22_50	2022		Oberdorf	AT	3	5 9.10		26.1	4.7	194	127	3.3		3.0			3
			Oberdorf	AT	3	28.51			5.3	193	103	2.3	5 .0	2.0	2.0		3
			Oberdorf														
WA22_82	2022	X	(V17)	AT	1	30.59			5.0	194	100	3.0	4.0	1.0	2.0		3
			Hagenberg im														
			Mühlkreis	AT	3	28.82	11.7	25.8	1.5		77	3.7		1.7		1.7	3
			Oberdorf	AT	3	65.35			2.5	190	127	3.0	6.3	3.0	2.0		3
WA22_88	2022		Hagenberg im											ш			
			Mühlkreis	AT	1	45 .85	16.5		2.0		80		5 .0			3.0	3
WA22_128	2022		Oberdorf	AT	3	62.39			3.5	193	138	3.0	6.3		2.0		3
WA22_136	2022		Oberdorf	AT	3	73.14			2.3	191	117		2.3				3
WA22_175	2022		Oberdorf	AT	3	70.94			2.2	192	127	3.3		2.0			3
WA22_176	2022		Oberdorf	AT	3	64.47			2.3	192	132	3.0		2.3			3
*****	2022		Oberdorf	AT	3	69.30			2.0	192	127	2.7	5.7	1.3	1.7		3
WA22_178	2022		Hagenberg im Mühlkreis	AT	1	36.92	12.4		3.0		80	2.0	2.0	2.0	2.0	3.0	3
WA22_179	2022		Oberdorf	AT	3	74.01			2.0	192	132	2.7		1.7			3
			Oberdorf	AT	3	63.71			2.8	193	145	2.7		2.7	2.3		3
WA22_180	2022		Hagenberg im	A.T.	4	51.00	10.5		2.0		0.5	<i>-</i> ^		7.0	1.0	2.0	2
			Mühlkreis	AT	1	51 .08	12.6		2.0		95	5.0	6.0	7.0	1.0	3.0	3

3.2.6 KÖRNERERBSE

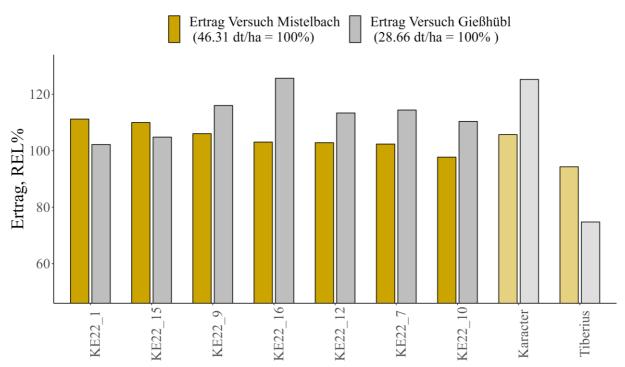


Abbildung 39: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche in Mistelbach (gelb) sowie in Bezug auf Versuche in Gießhübl (grau) der sieben im zweiten Projektjahr ertragreichsten Zuchtlinien der Körnererbse und der Standardsorten *Karacter* und *Tiberius*.

Bei der Kulturart Körnererbse hat sich der Projektumfang im Vergleich zum Projektjahr 2021 nicht verändert. Erneut wurden an den zwei österreichischen Standorten Mistelbach und Gießhübl je ein Sortenversuch angelegt. Dabei waren die Pflanzen am Standort Mistelbach in 2022 einem hohem Trockenstress ausgesetzt (Stufe 1), am Standort Gießhübl wirkte immer noch ein mittlerer Trockenstress auf die Pflanzen ein (Stufe 2). Generell schnitten die mitangebauten Standardsorten *Karacter* und *Tiberius* in diesen Versuchen nicht schlecht ab, vor allem die Sorte *Karacter* zeigte am Standort Gießhübl überdurchschnittliche Ertragsergebnisse. Dennoch zeigten sich vor allem im Trockenstress-Versuch am Standort Mistelbach einige Zuchtlinien ihr Potential im Trockengebiet (Abbildung 39). Auch hinsichtlich der erhobenen Qualitäten taten sich vereinzelte Zuchtlinien hervor (Tabelle 60). Bevor es auf dem Weg zu klimafitten Körnererbsensorten zu einer Anmeldung zur Wertprüfung kommt, sind allerdings noch weitere Anbauversuche notwendig, um das Verhalten dieser potentiellen Kandidaten unter unterschiedlichen Bedingungen zu testen.

Tabelle 60: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien der Körnererbse im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter zur Feststellung ihres Verhaltens in der Umwelt.

Name	Jahr	Standort	Land	Parzellenanzahl	pu/pp Kornertrag	% Rohproteingehalt	% Erntefeuchte	g Wuchshöhe	Jugendentwicklung	Blühbeginn	6- Reifebonitur früh	Lagerung	Intensität des Trockenstresses für die Kultur
KE22_1	2022	Gießhübl	AT	3	29.3	23. 0	20.4	87		4.0	4.0	1.0	2
IXE22_1	2022	Mistelbach	AT	3	51.5	22 .1	13.9	85	3.7	4.0	4.0	1.0	1
KE22_7	2022	Gießhübl	AT	3	32.8	23. 0	19.7	85	3.0	4.0	5.7	1.7	2
11122_/	2022	Mistelbach	AT	3	47.4	21.0	13.5	82	3.3	3.3	5.3	1.0	1
KE22_9	2022	Gießhübl	AT	3	33.2	22 .0	19.4	87	4.3	5.0	6.0	1.7	2
KE22_)	2022	Mistelbach	AT	3	49.1	2 1.5	14.1	85	4.0	5.0	5.7	1.0	1
KE22_10	2022	Gießhübl	AT	3	31.6	2 1.5	19.6	90	3.7	5.0	6.0	1.0	2
KE22_10	2022	Mistelbach	AT	3	45.3	2 1.3	14.5	8 8	3.7	5.0	5.7	1.0	1
KE22_12	2022	Gießhübl	AT	3	32.5	20.5	17.5	87	4.0	4.0	3.3	1.0	2
KEZZ_1Z	2022	Mistelbach	AT	3	47.6	20.1	14.4	80	3.3	3.0	3.3	1.0	1
KE22_15	2022	Gießhübl	AT	3	30.0		19.0		3.3	3.7	3.0	1.0	2
KE22_13	2022	Mistelbach	AT	3	50.9		14.0	90	3.3	3.7	3.0	1.0	1
KE22_16	2022	Gießhübl	AT	3	36.0	24.3	18.1	102	3.0	5.7	6.7	3.3	2
131222_10	2022	Mistelbach	AT	3	47.7	22 .3	13.2	100	3.3	5.7	6.3	1.0	1

3.2.7 WEIßE LUPINE

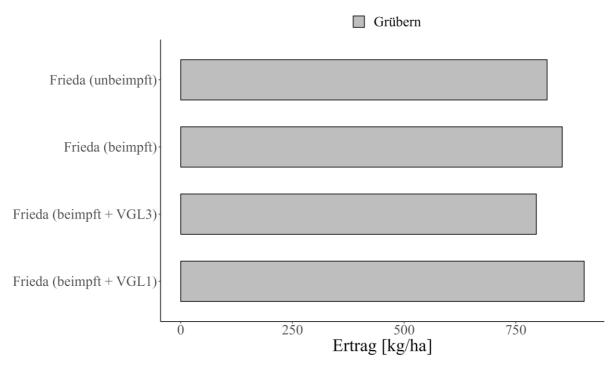


Abbildung 40: Ertrag der Weißen Lupine Sorte *Frieda* in Grübern nach Behandlung mit in Österreich marktbedeutenden Beimpfungspräparaten unterschiedlicher Preisklassen.

Die Weiße Lupine zeichnet sich durch einen hohen potentiellen Proteingehalt und eine hohe physiologische Eignung für die Humanernährung aus. Weiterhin eignet sich die Weiße Lupine aufgrund ihres geringen Bitterstoffgehalts und ihrer hochwertigen Eiweißzusammensetzung sehr gut als Futtermittel und lockert getreidebetonte Fruchtfolgen auf. Auch verfügt die Weiße Lupine mit ihrer tiefreichenden Pfahlwurzel über ein hohes Wasseraneignungspotential – eine Eigenschaft, der besonders unter trockenen Witterungsbedingungen eine hohe Bedeutung zukommt.

Bei der Weißen Lupine sollte im vergangenen Projektjahr 2022 durch Parzellenexaktversuche an zwei Standorten (Marchegg im Marchfeld und Grübern im Waldviertel) die Eignung verschiedener, marktbedeutender Beimpfungspräparate für den heimischen Anbau getestet werden. Erklärtes Ziel der Versuche war es den Einfluss der unterschiedlichen Beimpfungspräparate und Betriebsmittel auf den Ertrag und die Qualität zu messen sowie den Einfluss der unterschiedlichen Standorte auf den Ertrag zu analysieren. Dazu wurden 4 Varianten in vierfacher Wiederholung an den beiden Standorten angebaut. Bei den Versuchen zeigte sich dann, dass sich - vor allem aufgrund der für viele Leguminosen typischen langsamen Jugendentwicklung – eine effektive Beikrautregulierung als schwierig herausstellte. Diese erfolgte bei den beiden angelegten Versuchen mehrere Male über den gesamten Versuchsverlauf und ausschließlich händisch, da die in Österreich zugelassene chemische Pflanzenschutzmittelpalette sehr dürftig ist. Leider zeigte sich im Verlauf der Versuche auch, dass eine Ernte am Standort Marchegg nicht sinnvoll war. In diesem Versuch war die weiße Lupine einem außerordentlich hohem Trockenstress ausgesetzt, der Versuch wurde folglich nicht geerntet. Auch wurden in 2022 im Vergleich zu 2021 weniger Beimpfungspräparate getestet. Hier wurden nur die Präparate VGL3 und VGL1 erneut getestet, als Sorte wurde auch nur die Standardsorte Frieda angebaut. Die Ertragsergebnisse des Versuches in Grübern sind in Abbildung 40 abgebildet. Es bleibt abzuwarten, in welcher Art und Weise das Versuchsdesign adaptiert werden muss, um hier aussagekräftigere Ergebnisse erzielen zu können.

Tabelle 61: Ausgewählte erhobene Parameter der Weißen Lupine Sorte *Frieda* nach Behandlung mit in Österreich marktbedeutenden Beimpfungspräparaten unterschiedlicher Preisklassen im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten.

				anzahl	Kornertrag	Intensität des Trockenstresses für die Kultur
Name	Jahr	Standort	Land	Parzellenanzahl	Kg/ha	Intensität Kultur
Frieda (unbeimpft)	2022	Standort Grübern	T Tand	Parzellen		Entensität Kultur
					kg/ha	
Frieda (unbeimpft)	2022	Grübern	AT	4	kg/ha	3

3.2.8 KÄFER- UND GARTENBOHNE

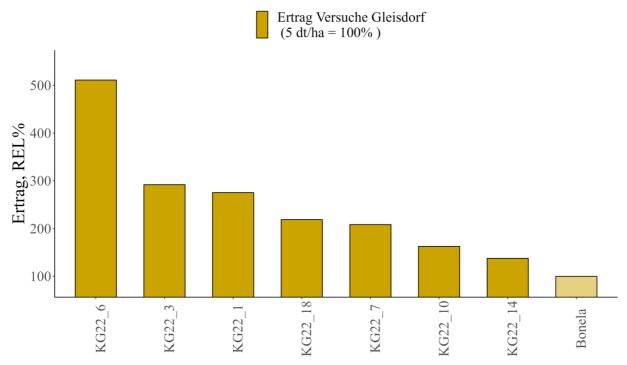


Abbildung 41: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche ohne Trockenstress (grau) der sieben im zweiten Projektjahr ertragreichsten Zuchtlinien der Käfer- und Gartenbohnen und der Standardsorte *Bonela*.

Zur Phaseolus-Bohnen-Prüfung wurden 2022 insgesamt 42 Prüfparzellen in Mais-Mischkultur am Versuchsstandort Gleisdorf angelegt. Die Vegetationsperiode zeichnete sich durch wechselfeuchte/optimale Bedingungen in der frühen Jugendentwicklung und in der Spätsaison-Phase aus, wohingegen die Phasen des aktiven Wachstums und der Ertragsbildung durch trockene und sehr heiße Bedingungen geprägt waren. Folglich wurde der Versuch als mittlerer Trockenstressversuch eingestuft. Die Referenzsorte Bonela (eine Käferbohne, *Phaseolus coccineus*) setzte in der Hitzeperiode kaum Hülsen an. Als dann die Bedingungen besser wurden, trieb sie neu durch und produzierte hohe Mengen Biomasse, was zu massivem Lager der Mais-Stützfrucht und später, ungleichmäßiger Abreife der Bohnen führte. Die im Vergleich geprüften Gartenbohnen (Phaseolus vulgaris) konnten hingegen ihre höhere Hitzetoleranz ausspielen, setzten in der Hitzeperiode Hülsen an und kamen bis in den Herbst gut zu einer gleichmäßigen Abreife. Der Kornertrag wurde für 42 Parzellen ermittelt und ergab durchschnittlich 5,0 dt/ha bei der Referenzsorte Bonela und 10,1 dt/ha bei den Gartenbohnen-Akzessionen. Die durchgeführten Versuche liefern interessante Erkenntnisse hinsichtlich Anbautechniken bei der Bohnen-Prüfung. So konnte bei den Phaseolus-Bohnen eine sehr deutliche Differenzierung zwischen Käfer- und Gartenbohnen hinsichtlich Lager der Mais-Stützfrucht und Abreife über alle Versuchsglieder beobachtet werden. Während die Standardsorte Bonela (Käferbohne) ein durchschnittliches Lager von 5,7 und eine Reife von 8,0 aufwies, wurde bei den Gartenbohnen ein durchschnittliches Lager von 2,3 und eine Reife von 5,4 bonitiert. Auch wurde beobachtet, dass bei dem Versuch die Phase der Blüte und Ertragsbildung durch sehr hohe Temperaturen gekennzeichnet waren (21 Tage $> 30^{\circ}$ C, davon $11 > 31^{\circ}$ C, davon $7 > 32^{\circ}$ C, davon $4 > 33^{\circ}$ C und 1 Tag mit $34,9^{\circ}$ C). Während die Käferbohnen in diesem Zeitraum kaum Hülsen ausbildeten, konnten die Gartenbohnen-Akzessionen ihre höhere Hitzetoleranz zeigen und einen doppelt so hohen durchschnittlichen Kornertrag bilden.

ERGEBNISSE

Tabelle 62: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien der Käfer- und Gartenbohnen im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter zur Feststellung ihres Verhaltens in der Umwelt.

Name	Jahr	Standort	Land	Parzellenanzahl	dt/ha	Lagerung	Reifebonitur	Intensität des Trockenstresses für die Kultur
KG22_1	2022	Gleisdorf	AT	2	13.8	4.5	4.5	2
KG22_3	2022	Gleisdorf	AT	2	14.6	1.3	3.5	2
KG22_6	2022	Gleisdorf	AT	3	25.6	7.7	5.0	2
KG22_7	2022	Gleisdorf	AT	3	10.4	1.7	4.3	2
KG22_10	2022	Gleisdorf	AT	3	8.1	1.3	8.0	2
KG22_14	2022	Gleisdorf	AT	4	6.9	1.3	5.0	2
KG22_18	2022	Gleisdorf	AT	3	11.0	1.3	4.3	2

3.3 KARTOFFEL

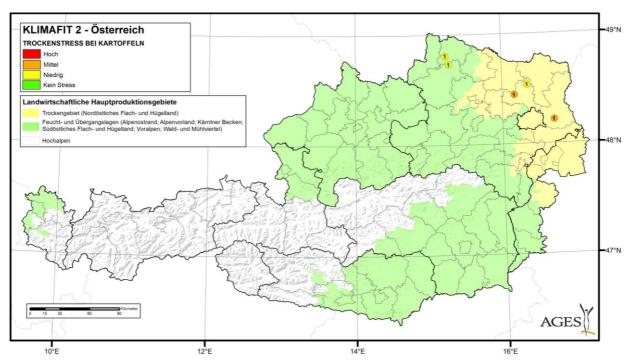


Abbildung 42: Verteilung der einzelnen Versuchsstandorte des zweiten Projektjahres (2022) und der dazugehörigen Trockenstress-Intensität der Standorte an denen die Kartoffel angebaut wurde. Eine höhere Auflösung der Karte findet sich im Anhang.

Im zweiten KLIMAFIT 2 Projektjahr wurden bei der Kartoffel zehn Versuche an fünf Standorten angelegt, welche sich alle innerhalb Österreichs befanden. Dabei können die Standorte hinsichtlich ihrer Bewirtschaftungsform unterschieden werden. Auf den 2 konventionellen Versuchsstandorten Meires und Naglern wurden 6 Versuche angelegt, auf den 3 Bio-Standorten Untermallebarn, Fuchsenbigl und Schwarzenau wurden 4 Versuche angelegt. Im Jahr 2022 waren die Legebedingungen für die Kartoffel ziemlich optimal, da an den Versuchsstandorten gute Bodenfeuchte vorhanden war. Im Mai sorgte eine Kaltfront dafür, dass an einigen Pflanzen Frostschäden auftraten. Im Waldviertel (dieses umfasst die Versuchsstandorte Meires und Schwarzenau) setzte rechtzeitig während der Jugendentwicklung der Pflanzen Regen ein, wohingegen es im Weinviertel (Versuchsstandorte Untermallebarn und Naglern) und am Versuchsstandort Fuchsenbigl (Marchfeld) während der Blütenbildung, also im Monat Juni, deutlich zu trocken war. Insgesamt wurden die Standorte Untermallebarn und Fuchsenbigl als Trockenstress-Standorte eingestuft (Stufe 2), an den Standorten Naglern, Schwarzenau und Meires war die Intensität des Trockenstresses lediglich niedrig (Stufe 3).

Bei der Kartoffel gibt es zahlreiche Verwertungsrichtungen (Pommes Frites, Chips, Stärke, usw.). Dementsprechend gibt es auch mehrere Beurteilungskriterien. Je nach Verwertungsrichtung spielen die verschiedenen Merkmale eine unterschiedliche Rolle, weswegen eine allgemeine Selektion auf ein Merkmal wie z. B. Ertrag nicht zielführend ist. Auch Sorten und Stämme, die auf dem Feld einen positiven Eindruck hinterlassen, können nach Beurteilung der geernteten Ware im Labor noch aus dem Zuchtprogramm ausscheiden. Dabei wirken sich Hitze und Trockenheit nicht nur auf den Ertrag, sondern auch stark auf Speise-und Verarbeitungsqualität der Kartoffeln aus. Bei der Speisequalität spielt neben dem Geschmack auch die Optik der Knollen eine große Rolle, welche ebenfalls durch Hitze und Trockenheit stark beeinflusst werden. So kommen bei der Kartoffel auch nach den Feldversuchen noch sehr viele Prüfungen und Bonituren hinsichtlich Speise- und Verarbeitungsqualität hinzu.

Im Weinviertel hatten die Versuchsflächen aufgrund der Trockenheit stark mit dem Drahtwurm zu kämpfen, eine seriöse Bonitierung hinsichtlich eventuell Resistenzen gegenüber dem Drahtwurm konnte allerdings nicht

bonitiert werden. Einsetzende Starkniederschlagsereignisse am Standort Naglern sorgten für auftretenden Zwiewuchs, welcher grundsätzlich die Qualität der Knollen minderte. Dennoch erwies sich das zurückliegende Jahr als positiv für die Bonitur. Im Waldviertel konnte unter fast optimalen Bedingungen angebaut werden, wohingegen die Extremstandorte Untermallebarn und Fuchsenbigl mit starker Trockenheit zu kämpfen hatten. Diese Dualität ermöglichte das Beobachten der Zuchtlinien in mehreren Umwelten. Die Ernte der Versuchsparzellen wurde durch kontinuierlichen Regen ein wenig verzögert.

Der adjustierte mittlerer relative Ertrag vielversprechender Zuchtstämme unterschiedlicher Verwertungsrichtungen in Bezug auf Versuche aus dem konventionellen Anbau sind in Abbildung 43 abgebildet. Der adjustierte mittlerer relative Ertrag vielversprechender Kartoffel-Zuchtstämme unterschiedlicher Verwertungsrichtungen in Bezug auf Versuche aus dem Biolandbau sind in Abbildung 44 wiedergegeben. Die erhobenen Bonituren der vielversprechenden Zuchtlinien bezüglich des Feststellen ihres Verhaltens in der Umwelt sowie der gemessenen Qualitäten sind in Tabelle 63, Tabelle 64, Tabelle 65 und Tabelle 66 abgebildet. Basierend auf den im Projekt umgesetzten Versuche wurden bei der Kartoffel 5 vielversprechende Zuchtlinien für die Wertprüfung angemeldet.

3.3.1 KARTOFFEL IM KONVENTIONELLEN ANBAU

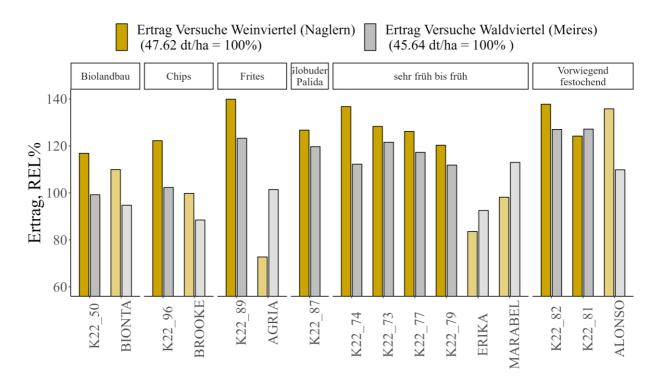


Abbildung 43: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche im Weinviertel (Naglern) (gelb) sowie in Bezug auf Versuche im Waldviertel (Meires) (grau) der zehn im zweiten Projektjahr ertragreichsten Kartoffel-Zuchtlinien im konventionellen Anbau und der Standardsorten *Bionta, Brooke, Agria, Erika, Marabel* und *Alonso*.

Tabelle 63: Ausgewählte erhobene Parameter vielversprechender Zuchtlinien der Kartoffel im konventionelle Anbau im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten.

Name	Jahr	Gruppe	WP	Standort	Land	Parzellenanzahl	Knollenertrag	Stärke	Stärkeertrag	Standengewicht pro Wiederholung	Partie Eindruck	Fleischfarbe	Knollenform	Schalenfarbe	Formschönheit	Knollengröße	Sortierung	Schalenbeschaffenheit	Intensität des Trockenstresses für die Kultur
Z	J.	<u>5</u>	M	Meires	AT	3	t/ha 45.3	% 15.1	t/ha 6.8	kg	Bon. 5.5	. 1-9 5.8				Bon 34		4.5	3
K22_50	2022	Biolandbau		Naglern	AT	4	<u>4</u> +3.3	13.8	7.5	1.1	4.2	5.8	ov	g	4.2	2.6		4.2	3
W22 F2	2022	sehr früh bis	X	Meires	AT	3	55 .5	10.0	5.6	1.2	4.7	6.6			5. 3	3.4	5.3	2.6	3
K22_73	2022	früh	X	Naglern	ΑT	4	61.1	12.2	7.5	1.1	4.2	6.6	ov	g	4.2	3.4	2.6	2.6	3
K22_74	2022	sehr früh bis		Meires	AT	3	51.2	13.4	6.8	1.0									3
		früh		Naglern	AT	4	65.1	13.4	8.6	1.1									3
K22_77	2022	sehr früh bis früh		Meires Naglern	AT AT	3	53.5 60.1	14.0 15.8	7.5 9.5	1.2 1 1									3
		sehr früh bis		Meires	AT	3	51.0	14.1	7.2	$\frac{1}{1.3}$	5.0	4.2			5 0	2.9	47	5. 3	3
K22_79	2022	früh	WP3	Naglern	AT	4	5 7.3	13.3	7.6	1.2	7.4	4.2	rov	g	4.2			5.8	3
K22_81	2022	vorwiegend		Meires	ΑT	3	5 8.0	11.6	6.8	1.3									3
K22_81	2022	festkochend		Naglern	ΑT	4	5 9.1	15.0	9.0	1.1									3
K22_82	2022	vorwiegend		Meires	ΑT	3	5 8.0	12.7	7.3	1.4		4.7	ov	g	4.2	3.4	4.7	4.7	3
		festkochend		Naglern	AT	4	65 .6	14.7	9.7	1.1	6.6	5.0	•	ь	4.2	4.2	5.8	4.2	3
K22_83	2022	mehlig	X	Meires	AT	3	49.3	11.3	5.6	1.3	3.9	6.6	rov	g	3.9	3.2	4.7	2.6	3
		kochend		Naglern Meires	AT AT	3	52.8 46.9	14.1 13.8	7.4 6.5	1.0	5.8 4.2	6.6 4.5			5.0 3.9	3.4 3.8	5.0 4.7	4.2 2.6	3
K22_85	2022	Biolandbau	X	Naglern	AT	4	46.9 5 4.0	12.9	6.6	1.0		4.3 4.2	lov	g	5.9 5.0	4.2	4./ 5.0	2.6	3
****	2025	Globudera		Meires	AT	3	54 .6	14.3	7.8	1.3					<u> </u>		۷.۷		3
K22_87	2022	Palida		Naglern	AT	4	60.4	13.9	8.5	1.2									3
K22_89	2022	Frites		Meires	ΑT	3	5 6.3	16.2	9.2	1.2	4.7	5.0	01/1	œ	6.3	2.6	5.0	5 .8	3
K44_09	2022	1.11168		Naglern	AT	4	66.6	<u>15</u> .6	10.3	1.3	3.4	5.8	ovl	g	4.2	2.6	2.6	7.4	3
K22_96	2022	Chips	X	Meires	AT	3	46.7	<u>16</u> .8	7.8	1.1	4.2	5.0	rov	g	4.5	3.1	4.2	4.7	3
		P-		Naglern	AT	4	58. 2	15.5	8.9	1.1	5.8	5.8		0	5.0	3.4	2.6	5.8	3
K22_99	2022	Stärke	X	Meires	AT	3	41.0	22.5	9.2	1.0	5.0	7.4	rov	g	5.5	4.2	5.3	6.3	3
				Naglern	AT	4	5 1.2	20.3	10.3	1.0	5.8	7.4			5.8	4.2	5.8	7.4	3

Tabelle 64: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien der Kartoffel im konventionellen Anbau im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt.

Name		Jahr	Gruppe	WP	Standort	Land	Parzellenanzahl	Aufgang	Entwicklung	Fehlstellen	MO Stk.	BR Stk	Fadenkeimer Stk.	Staudentyp	Augenlage	Schorf	Silberschorf	Rhizoctonia	Durchwuchs	Wachstumsrisse	Intensität des Trockenstresses für die Kultur
Z		ſ	9	>				6.3	5.3	8.0	1	2	1	2.0	2.0]	Bon. 4.2	1-9 4.2			
K22_5	50	2022	Biolandbau		Meires Naglern	AT AT	4	5.5	5.3	8.0		2	2	2.0	2.6		4.2	4.2			3
			sehr früh		Meires	AT	3	6.3	4.8					1.0	2.6	4.2					3
K22_7	73	2022	bis früh	X	Naglern	AT	4	6.5	5.6				2	1.0	2.6	7.2					3
			sehr früh		Meires	AT	3	6.3	5.9					3.0	2.0						3
K22_7	74	2022	bis früh		Naglern	AT	4	5.4	5.2	8.0			2	2.0							3
			sehr früh		Meires	AT	3	4.6	2.6		3			2.0							3
K22_7	17	2022	bis früh		Naglern	AT	4	3.3	2.6				1								3
1700 /	70	2022	sehr früh	WP3	Meires	AT	3	5.6	5.6		1			2.0	3.4	4.2					3
K22_7	19	2022	bis früh	WP3	Naglern	AT	4	6.2	5.9						2.6				5.8		3
K22_8	21	2022	vorwiegend		Meires	AT	3	3.2	2.6		1			2.0							3
K22_0	91	2022	festkochend		Naglern	AT	4	4.8	4.4												3
K22_8	22	2022	vorwiegend		Meires	AT	3	3.1	2.6		2			1.0	2.6						3
1\(2\(2\)_	34	2022	festkochend		Naglern	AT	4	4 .4	4.0	8.0					2.6					4.2	3
K22_8	83	2022	mehlig	X	Meires	AT	3	4.5	3.1					2.0	4.5			4.2			3
		2022	kochend	41	Naglern	AT	4	5 .0	4.9		3				5.0						3
K22 5	85	2022	Biolandbau	X	Meires	AT	3	5.5	5.0					1.0	2.6			4.2			3
	-				Naglern	AT	4	5.9	5.8						2.6						3
K22_8	87	2022	Globudera		Meires	AT	3	3.5	2.6	8.0	1		2	2.0							3
			Palida		Naglern	AT	4	4.0	3.4												3
K22_8	89	2022	Frites		Meires	AT	3	4.4	3.1					2.0	2.6			4.2			3
	_				Naglern	AT	4	4.6	3.9	0.0			1	2.0	2.6						3
K22_9	96	2022	Chips	X	Meires	AT	3	4.7	4.0	8.0				2.0	3.7						3
			•		Naglern	AT	4	6.4						1.0	4.2			5.8			3
K22_9	99	2022	Stärke	X	Meires	AT	3	5. 0	4.2					1.0	5.8						3
					Naglern	AT	4	4.5	4.5						6.6						3

3.3.2 KARTOFFEL IM BIOLANDBAU

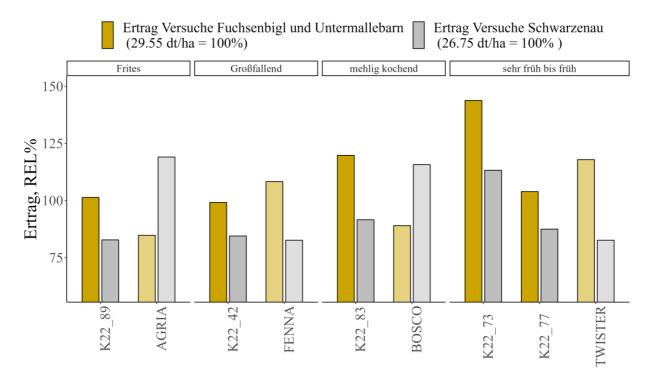


Abbildung 44: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche in Fuchsenbigl und Untermallebarn (gelb), sowie in Bezug auf Versuche in Schwarzenau (grau) der fünf im zweiten Projektjahr ertragreichsten Kartoffel-Zuchtlinien für den Biolandbau und der Standardsorten *Agria, Fenna, Bosco* und *Twister*.

Tabelle 65: Ausgewählte erhobene Parameter vielversprechender Zuchtlinien der Kartoffel für den Biolandbau im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten.

Name	Jahr	Gruppe	WP	Standort	Land	Parzellenanzahl	Knollenertrag	Stärke	Stärkeertrag	Staudengewicht pro Wiederholung	Partie Eindruck	Fleischfarbe	Knollenform	Schalenfarbe	Formschönheit	Knollengröße	Sortierung	Schalenbeschaffenheit	Intensität des Trockenstresses für die Kultur
Ž	Je	B	*	_			t/ha 27.9	% 9.3	t/ha	kg 07	Bon. 6.6	1-9				n. 1-	_	40	
K22 42	2022	großfallend	W/D2	Fuchsenbigl Schwarzenau	AT AT	2	21.9 22.6	12.3	2.6 2.8	0 .7	5.8	4.2 4.2	ovr	G	5.8 4.2		5.0 4.6	4.2	3
	2022	grobianend	WIZ	Untermallebarn	AT	2	30.7	15.2	4.7	0.8	6.2	5.0	OVI	g	5.4		3.8		2
				Fuchsenbigl	AT	2	39.4	8.5	3.3	1.0	4.2	5.8			4.2	2.6	_	2.6	2
K22_73	2022	sehr früh	X	Schwarzenau	AT	2	30.3	9.4	2.8	0.8	3.0	5.8	ov	g	2.6	2.6		2.6	3
		bis früh		Untermallebarn	ΑT	2	45.6	11.3	5.2	1.1	4.2	5.8		Ü	4.2	2.6	2.6	3.4	2
		1 £::1-		Fuchsenbigl	ΑT	2	2 9.0	9.2	2.7	0.7	4.6	3.8			4.6	3.4	4.2	4.2	2
K22_77	2022	sehr früh bis früh		Schwarzenau	ΑT	2	2 3.4	14.0	3.3	0.6	5.4	4.2	ovl	g	5.4	3.8	4.2	2.6	3
		DIS ITUII		Untermallebarn	AT	2	32.4	14.9	4.8	0. 8	4.2	4.6			4.6	4.2	4.2	4.2	2
		mehlig		Fuchsenbigl	AT	2	35. 2	10.2	3.6	0.9	5.0	6.6			<u>5.4</u>	3.4	3.8	4.2	2
K22_83	2022	kochend	X	Schwarzenau	AT	2	2 4.5	11.5	2.8	0 .6	3.4	7.4	rov	g	4.2	3.4		2.6	3
		Rochena		Untermallebarn	AT	2	35. 6	13.0	4.6	0.9	5.0	7.4			5.0	3.6		2.6	2
				Fuchsenbigl	AT	2		10.8	2.6	<u>0</u> .6	4.2	4.2			4.2	3.8		2.6	2
K22_85	2022	Biolandbau	X	Schwarzenau	AT	2	14.0	14.4	2.0	0.4	3.8	_	lov	g	3.0	4.0	_	3.4	3
				Untermallebarn	AT	2	2 4.6	15.0	3.7	0.6	5.0	4.6			4.2	4.0	4.6	2.6	2
		- .		Fuchsenbigl	AT	2	<u>29</u> .4	11.7	3.4	<u>0</u> .7	4.6	5.8			4.6	3.4	4.6	4.6	2
K22_89	2022	Frites		Schwarzenau	AT	2	22.1	15.9	3.5	0.6	4.2	5.0	ovl	g	4.6	3.0	5.0	4.6	3
				Untermallebarn	AT	2	30.5	15.8	4.8	0.8	4.2	5.4			4.2	3.0	4.2	4.2	2
1700 06	2022	CI :	37	Fuchsenbigl	AT	2	18.6	11.9	2.2	0.5	6.2	5.0			5.0	4.0	5.4	5.0	2
K22_96	2022	Chips	X	Schwarzenau Untermallebarn	AT AT	2	11.9 2 5.0	16.5	2.0 4.0	0.3	9.0 4.6	4.2 5.4	rov	g	5.4 5.0	4.0 3.4	5.0 4.6	5.4	3 2
-					AT	2	2p.0 19.1	16.1 193	4.0 3.7	0.6 0.5	7.4	5,4 7.4			<u> </u>	♪.4 5.8	4.b 5.4	4.p	2
K22_99	2022	Stärke	X	Fuchsenbigl Schwarzenau	AT	2	14.3	25.5	3.6	0.4	8.2	6.6	rov	_	5.8	5.4	5.4	5.8 5.8	3
K44_99	2022	Starke	^	Untermallebarn			19.5	25.2 25.2		0.4	8.2	7.4	rov	g	5.4	5.0	5.8	5.8	2
				Omermaneoarn	ΑI		1 9.3	23.2	4.9	v.s	0.2	7.4			J.#	0.0	5.8	J.8	

Tabelle 66 Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien der Kartoffel für den Biolandbau im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt.

Name		Jahr	Gruppe	WP	Standort	Land	Parzellenanzahl	Aufgang Bou	Entwicklung	MO Stk.	BR Stk	Phytophthora 2	Phytophthora 3	1 Augenlage	6 Schorf	Rhizoctonia	Intensität des Trockenstresses für die Kultur
		-			Fuchsenbigl	AT	2	7.8				3.4		3.4		6.6	2
K22_	42	2022	großfallend	WP2	Schwarzenau	AT	2	3.4	3.8			3.4	6.6	2.6		5.8	3
					Untermallebarn	AT	2	5 .6				2.6	4.2	3.4		5.4	2
			sehr früh bis		Fuchsenbigl	AT	2	9.0				4.6		2.6		4.2	2
K22_	73	2022	früh	X	Schwarzenau	AT	2	5 .4	4.6			4.2	7.4	2.6			3
			Hull		Untermallebarn	AT	2	6 .8				3.4	3.8		5.0		2
			sehr früh bis		Fuchsenbigl	AT	2	3.0				7.0		2.6		4.2	2
K22_	77	2022	früh		Schwarzenau	AT	2	3.0	2.6			4.2	9.0	2.6		5.8	3
			11 411		Untermallebarn	AT	2	3.6				5. 0	6.2		4.2		2
			mehlig		Fuchsenbigl	AT	2	5.0				5. 0		5 .0			2
K22_	83	2022	kochend	X	Schwarzenau	AT	2	3.8	3.4			3.4	7.4	2.6			3
					Untermallebarn	AT	2	5 .3				3.4	5 .0	_	5.8		2
					Fuchsenbigl	AT	2	8.2				4.6		2.6		5.0	2
K22_	85	2022	Biolandbau	X	Schwarzenau	AT	2	<u>5</u> .4	5.2		2.0	4.2	7. 0	2.6		4.2	3
					Untermallebarn	AT	2	6. 2				5. 0	5.4		5.8		2
					Fuchsenbigl	AT	2	5 .4				5. 0		3.4		5.0	2
K22_	89	2022	Frites		Schwarzenau	AT	2	_	3.8			3.4	5.0	2.6		5.8	3
					Untermallebarn	AT	2	4.6				4.2	4.2	2.6		4.2	2
			·		Fuchsenbigl	AT	2	7.6				3.8		4.2		5.8	2
K22_	96	2022	Chips	X	Schwarzenau	AT	2	<u>6.</u> 6	6.4			3.4	6.2	4.6		9.0	3
					Untermallebarn	AT	2	7.4				3.4	3.4	4.2		5.0	2
T700	00	2022	g. n. 1	**	Fuchsenbigl	AT	2	5.8		1.0		3.8	14.0	7.4		5.8	2
K22_	99	2022	Stärke	X	Schwarzenau	AT	2	5.0	5.2	1.0		2.6	_	5.0		7.4	3
					Untermallebarn	AT	2	5.0				4.2	4.2	4.6		6.6	2

3.4 VORVERSUCH ZUR ADAPTION DER BESCHREIBENDEN SORTENLISTE

Die Wetterbedingungen im Jahr 2022 am AGES Versuchsstandort Fuchsenbigl erwiesen sich als überaus herausfordernd für den angelegten Soja-Versuch, insbesondere für die Sojabohnen der unberegneten Variante. Der für die Versuchsregion verhältnismäßig späte Anbautermin Anfang Mai führte dazu, dass die Sojabohnen aufgrund der sehr warmen Temperaturen bereits während der Phase der Jugendentwicklung unter Trockenstress litten. In Folge wurde durchwegs eine langsame Jugendentwicklung bonitiert. Der Trockenstress am Versuchsstandort hielt fast die ganze Vegetationsperiode hindurch an, sodass die beregnete Variante viermal mit insgesamt 130 mm/m² bewässert werden musste Der positive Effekt der Beregnung führte schnell zu einer deutlich sichtbaren Differenzierung hinsichtlich der Wuchshöhe und des Reihenschlusses der Parzellen im Vergleich zu der unberegneten Variante. Auch der August war sehr trocken, was sich negativ auf das Wachstum der Sojapflanzen auswirkte. Letztendlich hatte der Trockenstress so einen großen negativen Einfluss auf das Wachstum der Sojabohnen, so dass bei der unberegneten Variante bis zur Abreife kein Reihenschluss erfolgte.

Eine klimafitte Sorte ist eine Sorte, die hohe Ertragsstabilität hat, also auch unter wechselnden Witterungsbedingungen einen hohen, verlässlichen Ertrag erreicht. In unserem Versuch könnten letztlich die Sojasorten als klimafit bezeichnet werden, die sowohl unter Trockenstress (d. h. ohne Bewässerung) als auch unter Bewässerungsbedingungen gut abschneiden. In dem 2022 angelegten Versuch stachen Sorten bzw. Sortenkandidaten hervor, die sowohl unter Trockenheit als auch unter normalen Bedingungen hohe Ertragswerte erreichten. Eine Möglichkeit, diese hohe Klimafitness zu veranschaulichen, besteht darin, die bewässerten und nicht bewässerten Kornerträge der angebauten Sorten in einem Streudiagramm darzustellen. Sorten, die sowohl unter beregneten als auch unter unberegneten Bedingungen ertragreich waren, befinden sich dann in der oberen rechten Ecke (Abbildung 45).

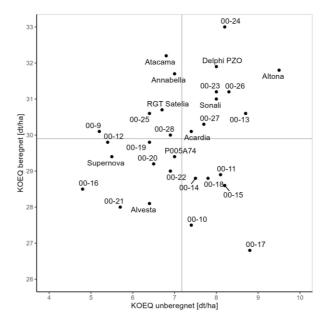


Abbildung 45: Streudiagramme, die den beregneten (y-Achse) und unberegneten (x-Achse) Kornertrag in dt/ha von Sojasorten und Sortenkandidaten der Reifegruppe 00 des Soja-Feldversuchs in Fuchsenbigl in 2022 darstellen.

Beim Wert des absoluten Kornertrags zeigte sich die bereits im Feld bemerkbare, ausgeprägte Differenzierung zwischen der beregneten und der unberegneten Variante. So erreichten die beregneten Versuchsparzellen ein Versuchsmittel von 29,9 dt/ha, wobei der niedrigste geerntete Ertrag eines Sortenkandidaten (00-15) für alle vier Wiederholungen bei durchschnittlichen 26,8 dt/ha lag. Den mit durchschnittlichen 33,0 dt/ha maximalen Ertrag im beregneten Anbau erzielte der Sortenkandidat 00-21. Dem gegenüber brach der Ertrag in der unberegneten Variante stark ein, hier wurde über alle Parzellen hinweg lediglich ein Versuchsmittel von

7,2 dt/ha erzielt, wobei hier der niedrigste geerntete Ertrag bei durchschnittlichen 4,8 dt/ha lag und beim Sortenkandidaten 00-14 gemessen wurde. Die Sorte Altona wies beim unberegneten Feldversuch mit durchschnittlich 9,5 dt/ha den Maximalertrag auf.

Dieser eklatante Unterschied bei der Ertragsausbildung zwischen der beregneten und der unberegneten Variante ließ sich bereits im Feld bei der Betrachtung der unterschiedlichen Wuchshöhen feststellen. Erreichten die Sojapflanzen in der beregneten Anbauvariante eine durchschnittliche Wuchshöhe über alle Sorten hinweg von 70 cm, mit einem Minimum von 59 cm und einem Maximum von 89 cm, so wurde bei der unberegneten Variante lediglich eine durchschnittliche Wuchshöhe von 32 cm (Minimum 23 cm, Maximum 41 cm) gemessen. Neben dem ausgeprägten Trockenstress lässt sich ein Teil des extremen Ertragsabfalls bei der unberegneten Variante auch über die verminderte Wuchshöhe erklären. So waren bei den niederwüchsigen Pflanzen die untersten Hülsen unterhalb der Schneidwergzeuge des Parzellenernters, sodass diese Hülsen nicht mitgeerntet wurden.

Auch bei den Winterweizen-Versuchen welche in 2021 und 2022 geerntet wurden, ließ sich hinsichtlich des erhobenen Kornertrages gut zwischen der beregneten und der unberegneten Variante differenzieren (Abbildung 46), obschon der Ertragsabfall in beiden Erntejahren nicht so bedeutend war wie bei dem am selben Standort angelegten Sojaversuch. Hier zeigte sich, dass der Winterweizen die Winterfeuchtigkeit gut ausnutzen konnte. Die besonders trockenen Sommermonate am Versuchsstandort, die die Sojabohne insbesondere in 2022 so erheblich beeinträchtigt haben, schadeten dem Winterweizen aufgrund seiner frühen Abreife weniger. So erzielte die beregnete Variante im Erntejahr 2021 ein Versuchsmittel von 90,4 dt/ha (Minimum 80,8 dt/ha, Maximum 96,8 dt/ha) und die unberegnete Variante ein Versuchsmittel von 82,2 dt/ha (Minimum 75,2 dt/ha, Maximum 89,2 dt/ha). Im Erntejahr 2022 war der Unterschied zwischen dem Ertrag der beiden Varianten ausgeprägter. Für die beregnete Variante wurde ein Versuchsmittel von 99,9 dt/ha (Minimum 91,5 dt/ha, Maximum 105,9 dt/ha) erhoben, wohingegen die unberegnete Variante nur noch 81,3 dt/ha (Minimum 73,9 dt/ha, Maximum 86,9 dt/ha) erreichte.

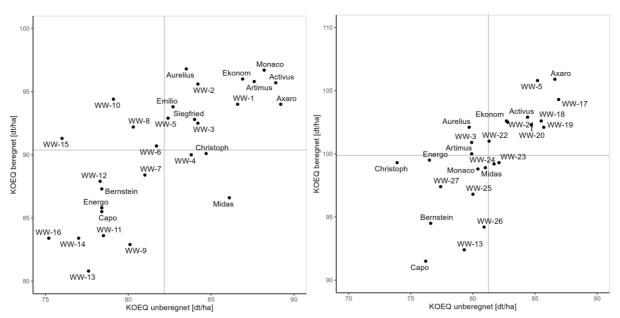


Abbildung 46: Streudiagramme, die den beregneten (y-Achse) und unberegneten (x-Achse) Kornertrag in dt/ha von Winterweizen Sorten und Sortenkandidaten in Fuchsenbigl im Erntejahr 2021 (links) und im Erntejahr 2022 (rechts) darstellen.

Die Versuchsanordnung in beregneten und unberegneten Varianten, so wie die hier präsentierte Darstellung der Ertragsdaten könnten ein möglicher Weg sein, um die Trockentoleranz einer Sorte zu bewerten. Dies könnte in weiterer Folge dazu führen, dass die Klimafitness einer Sorte in die beschreibende Sortenliste aufgenommen wird, was dem Endverbraucher zusätzliche nützliche Informationen liefern würde. Zum jetzigen Zeitpunkt können die durchgeführten Vorversuche als Grundlage für eine erste Einschätzung der

ERGEBNISSE

Praktikabilität der Ausdehnung der Wertprüfung dienen, und liefern nützliche erste Erkenntnisse darüber, wie die Leistung neuer Pflanzensorten in Bezug auf Trockenstress bewertet und dargestellt werden könnte.

Die Auswertungen der Drohnenaufnahmen erfolgen erst in 2023 und werden im KLIMAFIT 2 Projektabschlussbericht erscheinen.

3.5 GENOTYP X UMWELT INTERAKTIONSVERSUCH

3.5.1 ERGEBNISSE UND INTERPRETATION

Die fünf verschiedenen Versuchsjahre unterschieden sich leicht in dem durchschnittlichen Winterweizenertrag. Am ertragreichsten war 2021 mit durchschnittlich 7,90 dt/ha, gefolgt von 2022 und 2019 mit 7,21 dt/ha bzw. 7,15 dt/ha, dann folgte 2020 mit 6,99 dt/ha und 2018 mit 6,58 dt/ha. In Österreich ging 2018 als außergewöhnlich warmes Jahr in die Klimageschichte ein, was wahrscheinlich zu den relativ niedrigen Winterweizenerträgen in den Versuchen 2018 beigetragen hat. Das Jahr 2021 wiederum war in Österreich das kühlste Jahr seit 2010 und konnte daher in unseren Versuchen höhere Winterweizenerträge aufweisen.

Die Ertragsunterschiede zwischen den 40 Umwelten waren groß. Der Ertrag reicht von durchschnittlich 10,25 dt/ha in Staasdorf (AT) in 2019 bis 2,86 dt/ha in Cegléd (HU) in 2022 und 1,95 dt/ha in Dobric (BG) in 2020. Der Standort Cegléd (HU) wird in den nächsten Jahren nicht mehr als Versuchsstandort berücksichtigt, da es bereits mehrfach zu schweren Ertragsverlusten aufgrund von hohem Trockenstress durch hohe Temperaturen und wenig tiefgründigen Böden gekommen ist. Staasdorf (AT) überzeugte als Versuchsstandort, da er hohen und relativ stabilen Ertrag über die fünf Versuchsjahre lieferte (von 8,55 dt/ha in 2018 bis 10,25 dt/ha in 2019). Auf anderen Standorten ist ein ausgeprägter Jahreseffekt zu sehen, da der Ertrag der vier Sorten und Zuchtlinien *Artimus*, *Aurelius*, S_OST1 und S_OST5 am selben Standort in verschiedenen Jahren sehr unterschiedlich war. So reichte der Ertrag in Szekkutas (HU) von 7,92 dt/ha in 2020 zu 5,5 dt/ha in 2022. In Gerhaus (AT) war das Jahr 2020 am ertragreichsten (8,9 dt/ha) und 2018 am wenigsten ertragreich (6,31 dt/ha) (Abbildung 47).

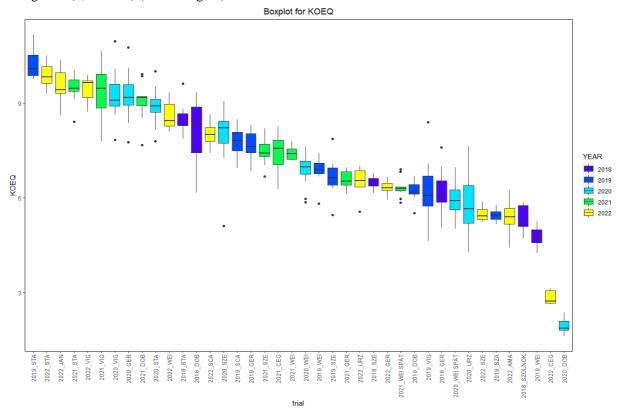


Abbildung 47: Boxplots, die in absteigender Reihenfolge den durchschnittlichen Ertrag in jeder der 40 verschiedenen Umwelten zeigen.

Tabelle 2 zeigt das Ergebnis der Finlay-Wilkinson Analyse der fünf stabilsten Genotypen. Die Zuchtlinie S_OST4 lag an erster Stelle, gefolgt von S_OST9 an zweiter, und der Sorte *Chevignon* an dritter Stelle, sowie S_OST1 und S_OST8 an vierter bzw. fünfter Stelle. Von diesen Genotypen hatte die Sorte *Chevignon* den

höchsten Ertrag (Tabelle 67). Die Sorte *Chevignon* wird als Futterweizen genutzt, während die vier Zuchtlinien in Richtung Qualitätsweizen gezüchtet wurden.

Tabelle 67: Ergebnis der Finlay-Wilkinson-Analyse.

Genotyp	GenMean	SE_GenMean	Rank	Sens	SE_Sens	MSdeviation
S_OST4	7,40	0,080	1	1,13	0,043	0,08
S_OST9	7,40	0,091	2	1,07	0,046	0,14
Chevignon	7,90	0,091	3	1,06	0,046	0,24
S_OST1	7,22	0,073	4	1,03	0,041	0,08
S_OST8	7,27	0,095	5	1,03	0,055	0,05

Der AMMI2-Biplot stellt die Genotyp-Umwelt-Interaktion für das Merkmal Ertrag für die ersten beiden Hauptkomponenten dar. Der Biplot zeigt ein deutliches Vorhandensein von Genotyp x Umwelt Interaktion, da die beiden Hauptkomponenten PC1 und PC2 fast 100% der Varianz beschreiben. Die Zuchtlinien S_OST10, S_OST2 und S_OST7 stellen die Genotypen dar, die am stärksten mit den Umwelten interagierten. Die Umwelten, die in ihre Richtung zeigen, wiesen eine positive Korrelation mit dem Genotyp auf. So hatte zum Beispiel die Zuchtlinie S_OST10 eine positive Wechselwirkung mit den Umwelten Staasdorf (AT) und Dobric (BG) in 2021. Die Genotypen, die über die Umwelten hinweg am stabilsten waren und nur minimale Wechselwirkungen aufwiesen, befinden sich im Ursprung des Biplots. Auch Umwelten, die einander ähnlich sind, liegen näher beieinander als Umwelten, die sich unterscheiden. Da viele der 40 Umwelten nahe beieinander im Ursprung gelagert sind, kann auf eine ähnliche Interaktion mit den Genotypen geschlossen werden. Größere Unterschiede können in den Jahren 2021 und 2022 festgestellt werden. Viele Versuche, die im Jahr 2022 angebaut wurden, gruppieren sich in der linken unteren Ecke zu dem Genotyp S_OST7, während viele Versuche aus 2021 sich nach rechts unten zu dem Genotyp S_OST2 orientieren. Der Standort Janzé (FR) verhält sich auffällig, da er gegensätzlich zu den anderen Standorten aus 2022 reagiert. Ebenso reagieren Staasdorf und Dobrin anders als die meisten anderen Standorte aus 2021 (Abbildung 48).

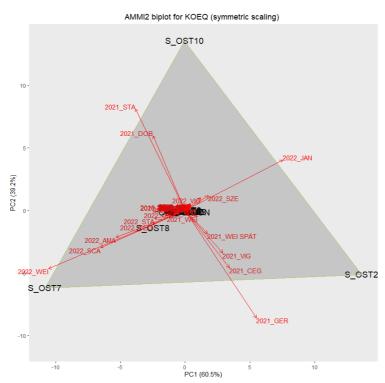


Abbildung 48: Ergebnisse des AMMI2 biplots.

Die 40 Umwelten in unserem Datensatz wurden auf der Grundlage ihrer leistungsstärksten Genotypen in vier Mega-Umwelten gruppiert, d.h. Umwelten, die denselben besten Genotyp aufweisen, gehören zur selben Mega-Umwelt. Dieser Ansatz ist interessant und wird in der Praxis genutzt, um Rückschlüsse auf sich ähnlich verhaltenden Umwelten zu bekommen. Er ist ähnlich dem vorher dargestellten AMMI2 Biplots. In der ersten Mega-Umwelt ist die Sorte Chevignon der beste Genotyp. Die erste Mega-Umwelt besteht nur aus zwei Umwelten und zwar dem Standort Dobric (BG) in den Jahren 2019 und 2020. Die beiden anderen Versuche am Standort Dobric (BG) werden stattdessen zu der Mega-Umwelt 4 (in 2018) und 2 (in 2021) gruppiert. Die zweite Mega-Umwelt umfasst 15 verschiedene Umwelten. Dazu gehört z. B. der Standort Staasdorf (AT) in allen Jahren außer 2022. S OST10 ist der beste Genotyp für die zweite Mega-Umwelt. Die Berechnung der Mega-Umwelten bestätigt den großen Jahreseffekt auf die Genotyp x Umwelt Interaktion, denn insbesondere die Standorte aus 2021 und 2022 gruppieren häufig gemeinsam in eine Mega-Umwelt. Zum Beispiel umfasst die dritte Mega-Umwelt 8 Versuche, die nur aus den Jahren 2021 und 2022 stammen. Nur zwei der acht Standorte aus 2021 wurden in einer anderen Mega-Umwelt gruppiert (Dobric (BG) und Staasdorf (AT)). Dass die Versuche aus dem Jahr 2021 getrennt von den anderen Jahren zusammen gruppiert wurden, lag vermutlich daran, dass in dem Jahr relativ kühle Temperaturen herrschten. Der Gewinner-Genotyp der dritten Mega-Umwelt ist S_OST2. Die vierte Mega-Umwelt enthält 15 Umwelten, von denen viele aus dem Jahr 2022 stammen. Nur drei der zehn Standorte aus 2022 sind nicht in der vierten Mega-Umwelt vertreten (2022_VIG, 2022_JAN, 2022_SZE). Hier ist der beste Genotyp die Zuchtlinie S_OST7 (Tabelle 68).

Tabelle 68: Ergebnis der Berechnung der Mega-Umwelten.

Mega-Umwelt	Umwelt	Gewinner-Genotyp	AMMI Bewertung
1	2019_DOB	Chevignon	6,57
1	2020_DOB	Chevighon	1,81
	2018_GER		7,83
	2018_STA		9,64
	2018_WEI		5,21
	2019_GER		8,30
	2019_SCA		8,39
	2019_STA		10,79
	2019_SZA		5,81
2	2019_SZE	S_OST10	8,07
	2020_GER		10,45
	2020_STA		9,36
	2020_URZ		8,47
	2020_WEI		7,69
	2021_DOB		84,97
	2021_STA		114,19
	2022_VIG		17,73
	2021_CEG		74,08
	2021_GER		121,64
	2021_SZE		15,35
3	2021_VIG	S OST2	63,51
3	2021_WEI	5_0512	19,22
	2021_WEI SPÄT		35,44
	2022_JAN		88,82
	2022_SZE		20,55
	2018_DOB		8,31
4	2018_SZE	S_OST7	6,87
	2018_SZOLNOK		5,82

Mega-Umwelt	Umwelt	Gewinner-Genotyp	AMMI Bewertung
	2019_VIG		6,94
	2019_WEI		7,50
	2020_SZE		9,93
	2020_VIG		9,71
	2020_WEI SPÄT		6,17
	2022_AMA		83,98
	2022_CEG		44,13
	2022_GER		12,07
	2022_SCA		104,42
	2022_STA		46,89
	2022_URZ		23,60
	2022_WEI		158,43

Im Folgenden werden drei verschiedene Stabilitätsindizes vorgestellt, die als Standardverfahren in der Untersuchung der Genotyp x Umwelt Interaktion gelten.

Der Cultivar-Superiority Measure ist ein für die Züchtung relevanter Index, da er nicht nur die Ertragsstabilität über mehrere Umwelten hinweg berücksichtigt, sondern auch die Höhe des Ertrags abbildet. Die Sorte *Chevignon* hat mit 0,03 eindeutig den niedrigsten Superiority Wert. Das heißt sie zeichnet sich durch hohe Erträge und hohe Ertragsstabilität in mehreren Umwelten aus. Sie hatte einen durchschnittlichen Ertrag von 7,97 dt/ha (Tabelle 69). Diesen hohen, beständigen Ertrag lässt sich aus der Praxis bestätigen. *Chevignon* ist eine Sorte für Futterweizen, die normalerweise in der Region von Frankreich bis Rumänien und Polen zuverlässig hohen Ertrag bringt. Die Zuchtlinien S_OST9 und S_OST4 folgen ihr nach mit einem Stabilitätsindex von 0,22 bzw. 0,29 und durchschnittlichen Ertrag von 7,47 dt/ha und 7,46 dt/ha (Tabelle 69).

Tabelle 69: Ergebnis der Cultivar-Superiority Measure Berechnung.

Genotyp	Durchschnittsertrag (dt/ha)	Cultivar-superiority measure
Chevignon	7,97	0,03
S_OST9	7,47	0,22
S_OST4	7,46	0,29

Mit dem Static Stability Coefficient wird die höchste Ertragsstabilität, ohne Berücksichtigung der entsprechenden Ertragsleistung dargestellt. Die Zuchtlinien S_OST2, S_OST3 und S_OST8 haben die niedrigsten Werte, das heißt sie gelten als besonders ertragsstabil über mehrere Umwelten hinweg. Züchterisch sind die Genotypen allerdings weniger interessant, da ihr durchschnittlicher Ertrag mit weniger als 7,40 dt/ha eher schwach war. Ertragreiche, aber weniger stabile Genotypen werden klassischerweise vor sehr stabilen, aber ertragsschwachen Genotypen bevorzugt (Tabelle 70).

Tabelle 70: Ergebnis der Static Stability Coefficient Berechnung.

Genotyp	Durchschnittsertrag (dt/ha)	Static Stability Coefficient
S_OST2	6,18	1,63
S_OST3	6,97	1,74
S_OST8	7,38	1,98

Nach dem Wricke's Ecovalence Stability Coefficient reagierte die Zuchtlinie S_OST8 am konsistentesten auf Veränderungen in der Umwelt. Die Sorte *Aurelius* und die Zuchtlinie S_OST1 folgten ihr nach. Der positive

ERGEBNISSE

Effekt ihrer hohen Ertragsstabilität wird allerdings wieder durch ihren geringen durchschnittlichen Ertrag gedämpft (Tabelle 71).

Tabelle 71: Ergebnis der Wricke's Ecovalence Stability Coefficient Berechnung.

Genotyp	Durchschnittsertrag (dt/ha)	Wricke's Ecovalence Stability Coefficient
S_OST8	7,38	1,27
Aurelius	7,13	3,12
S_OST1	7,20	3,28

Zusammengefasst lässt sich sagen, dass die Ergebnisse unserer Versuche eine starke Genotyp x Umwelt Interaktion zeigten. Die Rangreihung im Ertrag der Genotypen änderte sich in den verschiedenen Umwelten. Welche Genotypen eine positive Interaktion mit bestimmten Umwelten hatten, lässt sich im AMMI2 Biplot oder der Berechnung der Mega-Umwelten ablesen. Die Zuchtlinien die als besonders ertragsstabil über mehrere Umwelten waren (z.B. S_OST8), wurden aufgrund ihres niedrigen Ertrags als weniger züchtungsrelevant eingeschätzt. Gleichzeitig wurde *Chevignon* als ertragreiche und ertragsstabile Sorte identifiziert und wurde damit für die Züchtung als relevant erachtet.

4 ERREICHTE ERGEBNISSE IM ZWEITEN PROJEKTJAHR

Im zweiten KLIMAFIT 2 Projektjahr (2022) wurden die erfolgreichen Arbeiten der zurückliegenden Projektjahre fortgeführt, basierend auf dem für die Zielerreichung des Projektes erstelltem Arbeitsplans. Innerhalb der verschiedenen Arbeitspakete konnten die genomische und markergestützte Selektion, das Anlegen von Sortenversuchen zur Feststellung des Verhaltens der neuen Zuchtstämme in der Umwelt, sowie die Ermittlung der Qualitäten der neuen Zuchtstämme planmäßig durchgeführt werden.

Wesentliche züchterische Arbeiten, die die Grundlage für die Entwicklung neuer, an die zukünftigen klimatischen Bedingungen in Österreich angepasster Sorten bilden, konnten im zurückliegenden Projektjahr durchgeführt werden. Dabei handelte es sich um Arbeiten zur Züchtung neuer Sorten mit erhöhter ökologischer Stabilität, die auch unter unterschiedlichen Stress- und Extrembedingungen (in erster Linie Hitze- und Trockenstress, aber auch Extremwetterereignisse und klimawandelbedingt auftretende Pflanzenkrankheiten) stabile Erträge in den Umwelten liefern. Um eine Vielfalt an neuem genetischen Material zu generieren, wurden in AP1 Arbeiten zur Vorselektion vielversprechender Genotypen mit besonderem Fokus auf Trocken- und Hitzestresstoleranz durchgeführt. Dabei konnten neue potentielle Kreuzungspartner identifiziert werden. Zur Vorselektion wurden einerseits klassische Züchtungsmethoden (Trainingspopulation, traditionelle Kreuzungszüchtung mit anschließender Ähren- oder Pflanzenselektion, Doppelhaploidenzüchtung, etc.), andererseits genomische und markergestützte Analysen sowie genomische Vorhersagemodelle eingesetzt.

In 2022 wurden von den im Projekt beteiligten Züchtungsunternehmen im AP2 insgesamt 1457 Versuche innerhalb 19 unterschiedlicher Kulturarten an 340 sowohl hinsichtlich des Klimas als auch der Umwelten sehr diversen Versuchsstandorten über ganz Europa verstreut angelegt. Dieses weit gespannte Versuchsnetz und die hohe Anzahl der Versuche ermöglichte das Abtesten neuer Zuchtlinien unter unterschiedlichsten Anbaubedingungen und erlaubt Rückschlüsse über das Verhalten in unterschiedlichste Umwelten. Diese Vielfalt der Standorte erlaubte die gezielte Selektion von Zuchtlinien in allen Kulturartengruppen mit Berücksichtigung von u.a. Trockenstresstoleranz, Hitzetoleranz, Krankheitsresistenzen und Schädlingsresistenzen. Die Einbindung einer großen Anzahl von österreichischen Versuchsstandorten führte zu spezifischen, an die österreichischen Anbaubedingungen bzw. an die österreichischen Marktbedingungen angepassten Genotypen. Dies stellt einen wesentlichen Beitrag zur Ernährungssicherheit mit heimischen Produkten dar.

In den Sortenversuchen wurde das Verhalten ausgewählter Zuchtlinien in der Umwelt abgetestet, d.h. wie diese neuen Genotypen auf Trockenstress, Hitzestress, Krankheitsresistenzen etc. reagieren. Die auf die Sortenversuche folgende Quantifizierung und Ermittlung der Qualitäten (AP3) von ausgewählten Zuchtlinien welche in den Feldversuchen bereits positiv hervorstachen legte die Basis für weitere Schritte hin zur Entwicklung klimafitter Sorten. Hier liegt der Fokus auf die gezielte Selektion von Zuchtlinien mit einer hohen Ertragsleistung, welche darüber hinaus aber auch die an moderne Sorten gestellten hohen Qualitätsanforderungen hinsichtlich Inhaltsstoffe, Verarbeitungsqualität, Vermarktungseignung etc. erfüllen. Die Betrachtung der Zuchtlinien in der Umwelt, aber auch die Erhebung der Qualitäten sind nicht voneinander zu trennende Arbeiten, welche notwendig sind um auch in Zukunft die landwirtschaftliche Primärproduktion sicherzustellen.

Bei der zukünftigen Zulassung klimafitter Sorten in Österreich ist eine Leistungsbeurteilung inkl. Darstellung der Ergebnisse unter Hitzeeinwirkung und Trockenheitsstress für die Landwirt:innen von großem anwendungsorientiertem Nutzen. Dazu sind Sortenprüfungen auf Trockenstandorten, an denen während der Periode der Leistungsbeurteilung eine hohe Wahrscheinlichkeit von auftretendem Trockenstress gegeben ist,

ERREICHTE ERGEBNISSE IM ZWEITEN PROJEKTJAHR

ein realisierbarer Ansatz. Weitere Informationen zum Verhalten in den Umwelten liefern Leistungsfeststellungen von Sortenkandidaten unter Beregnungseinsatz. Im Rahmen des Projektes KLIMAFIT 2 wurden Vorversuche für eine Anpassung in der Darstellung der Leistung neuer Sorten im Hinblick auf Trockenstresstoleranz durchgeführt, um dadurch den Impact des Projektes für die Endnutzer:innen wie Landwirt:innen und Saatgutkäufer:innen zu erhöhen. Die in den ersten beiden KLIMAFIT 2 durchgeführten Vorversuche zur Adaption der Beschreibenden Sortenliste liefern eine vielversprechende Datenbasis zur Bearbeitung der anwendungsorientierten Fragestellung wie die Leistung neuer Pflanzensorten in Bezug auf Trockenstress bewertet und dargestellt werden können. Durch den im Projekt KLIMAFIT erstmaligen Einsatz von neuen Technologien (Drohnenaufnahmen) konnte die für eine Entscheidungsfindung zugrundeliegende Datenbasis noch um weitere relevante Parameter erweitert werden. Die durchgeführten Versuche werden im dritten Projektjahr 2023 erneut durchgeführt, um eine möglichst große Datenbasis für die Evaluierung weiterer Schritte zu generieren.

Neben den bereits beschriebenen Projekttätigkeiten in den Arbeitspaketen 1, 2 und 3 wurde in 2022 erstmals auch der geplante Genotyp x Umwelt Interaktionsversuch ausgewertet. Im zweiten KLIMAFIT 2 Projektjahr wurde die Genotyp x Umwelt Interaktion für Winterweizen im Versuch Ost evaluiert. Primäre Ziel des durchgeführten Versuchs ist es, die Interaktion von Genotyp und Umwelt für das Merkmal Ertrag zu untersuchen und zu quantifizieren. Mit diesem Versuch konnten Genotypen, die durch hohe Ertragsstabilität, also hohen Ertrag über mehrere Umwelten hinweg, charakterisiert sind, identifiziert werden. Diese Ertragsstabilität der verschiedenen Genotypen wurde dabei mit Hilfe von verschiedenen Stabilitätsindizes dargestellt. Außerdem erlaubte die mehrjährige Datenreihe die verwendeten Standorte zu charakterisieren, sowie abweichende Standorte zu identifizieren. Zusammengefasst lässt sich sagen, dass die Ergebnisse der Versuche eine starke Genotyp x Umwelt Interaktion zeigten. Die Rangreihung im Ertrag der Genotypen änderte sich in den verschiedenen Umwelten. Es konnten Genotypen identifiziert werden, welche eine positive Interaktion mit bestimmten Umwelten hatten. Auch ermöglichten die Arbeiten Zuchtlinien zu identifizieren, welche zwar besonders ertragsstabil über mehrere Umwelten waren, welche aber aufgrund ihres niedrigen Ertrags als weniger züchtungsrelevant eingeschätzt wurden. Gleichzeitig konnten ertragreiche und ertragsstabile Sorte identifiziert werden, welche für weitere Züchtungsarbeiten als hochgradig relevant erachtet wurden.

Die große Anzahl von Parzellenversuchen in ganz Europa ermöglichte die Selektion von Zuchtlinien, die trotz Hitze- und Trockenstress an den Versuchsstandorten zufriedenstellende Erträge lieferten. Durch zusätzliche Bonituren und Messungen zur Qualitätsanalyse und zur Bestimmung des Verhaltens der Pflanzen in der Umwelt konnte bei einigen Zuchtlinien ein Mehrwert gegenüber den auf dem Markt erhältlichen Sorten festgestellt werden. Diese Zuchtlinien wurden dann von den am Projekt beteiligten Züchtungsunternehmen zur amtlichen Wertprüfung angemeldet. Die Anzahl der im Laufe des vergangenen Projektjahres neu angemeldeten Wertprüfungs-Kandidaten je Kulturart sind in Tabelle 72 wiedergegeben.

Tabelle 72: Anzahl der im Laufe des zweiten Projektjahres 2022 von KLIMAFIT 2 neu angemeldeten Wertprüfungs-Kandidaten in Österreich. In Klammern steht die zusätzliche Anzahl der angemeldeten Bio-Sorten.

Kulturart	Anzahl an neu angemeldeten WP Kandidaten in Österreich 2022
Getreide	60
Winterweizen	18 (2)
Sommergerste	8
Wintergerste zweizeilig	16
Wintergerste mehrzeilig	10
Wintertriticale	4
Winterroggen	2
Mais	22
Körnermais früh/mittelfrüh	10
Körnermais spät/mittelspät	12
Öl- und Eiweißpflanzen	63
Sojabohne Reifegruppe I und 0	7
Sojabohne Reifegruppe 00	11
Sojabohne Reifegruppe 000 bzw. 000/0000	20
Hybridraps	14
Sonnenblume	5
Hybrid-Ölkürbis	2
Sommerackerbohne	2
Winterackerbohne	2
Kartoffel	5

Durch die Maßnahmen im Projekt KLIMAFIT 2 wird die Ertragssicherheit im österreichischen Ackerbau durch die Bereitstellung von trockenheits- und hitzetoleranten Sorten langfristig erhöht, und zusätzlich ein wesentlicher Beitrag zur Erhaltung der Kulturartenvielfalt in Österreich geleistet. Darüber hinaus generieren die Arbeiten im Projekt wichtige genetische Ressourcen für zukünftige, nachhaltige Züchtungsarbeit am Standort Österreich, im Spannungsfeld zwischen Klimawandel und den Anforderungen an den Ertrag und die Qualität moderner Sorten. Somit leistet das Projekt KLIMAFIT 2 einen wesentlichen Beitrag zur Anpassung der österreichischen Landwirtschaft an den Klimawandel.

Die nachfolgenden Tabellen geben einen Überblick über die geplanten Bonituren und Messungen für das dritte Projektjahr 2023 bei den jeweiligen Kulturartengruppen.

Tabelle 73: Geplante Bonituren und Messungen für das dritte Projektjahr 2023 bei Getreide. (X) = Bonitur/Messung erfolgt nach Bedarf / bei Auftreten.

		Gep	olante	Bonit	uren 1 2023	und M	Iessur	ngen
Parameter	Einheit	Weizen	Gerste	Hafer	Triticale	Roggen	Hirse	Sorghum
Kolben- oder Grannenweizen	K = Kolben-, G= Grannenweizen	X						
Zweizeilig oder mehrzeilig	Z/M		X					
Brau oder Futter	B/F		X					
Qualitätseinstufung	Q/M/F	X						
Biolandbau	JA/NEIN	X						
Datum Ährenschieben	Tage ab 1.Jan	X	X	X	X	X		
Blühbeginn	Tage ab 1. Juli						X	
Rispenschieben	Bon.1-9							X
Wuchshöhe	cm	X	X	X	X	X	X	X
Jugendentwicklung	Bon.1-9						(X)	X
Reifebonitur	Bon.1-9	(X)		(X)			X	(X)
Gesamteindruck	Bon. 1-9						X	
Lagerung	Bon.1-9	(X)	(X)	(X)	(X)		X	(X)
Datum Gelbreife	Tage ab 1. Jänner	(X)						
Gelbreife	Bon.1-9		(X)					
Neigung zu Ährenknicken	Bon.1-9		(X)					
Neigung zu Halmknicken	Bon.1-9		(X)					
Mängel vor Winter	Bon.1-9	(X)						
Mängel nach Winter	Bon.1-9	(X)	(X)					
Anzahl Bestockungstriebe im Frühjahr	Bon.1-9	(X)						
Frohwüchsigkeit zum Schossen	Bon.1-9	(X)						
Mehltau (ERYSIPHE GRAMINIS)	Bon.1-9	(X)	(X)	(X)	(X)			
Gelbrost (PUCC. STRIIFORMIS)	Bon.1-9	(X)						
Braunrost (P.TRIT., P. DISP.)	Bon.1-9	(X)				(X)		
Zwergrost (PUCCINIA HORDEI)	Bon.1-9		(X)					
Septoria tritici - Blattdürre	Bon.1-9	(X)						
Blattseptoria (Septoria nodorum)	Bon.1-9	(X)						
Ramularia-Blattflecken	Bon.1-9		(X)					
Rhyncosporium Blattflecken	Bon.1-9		(X)					
Viroese Gelbverzwergung	Bon.1-9		(X)					
Netzflecken (PYRENOPH. TERES)	Bon.1-9		(X)					
Ährenfusarium (FUSARIUM SP.)	Bon.1-9	(X)						
Prozent sichtbarer Boden (Bio)	%	(X)						
Schartigkeit	Bon.1-9		(X)					
Kornertrag	dt/ha	X	X	X	X	X	X	X
Rohproteingehalt	%	X	(X)	(X)		(X)	(X)	
Hektolitergewicht	kg	X	X	X	X	X		

	•		Geplante Bonituren und Messunge 2023					
Parameter	Einheit	Weizen	Gerste	Hafer	Triticale	Roggen	Hirse	Sorghum
Rohprotein (NIRS)	%	X						
Sedimentationswert	ml	X						
Tausendkorngewicht	g TM	X	X	X			(X)	
Feuchtkleber	%	X						
Fallzahl nach Kolbach	%	(X)						
Kornbonitur	Bon.1-9	(X)	(X)	(X)				
Schälbarkeit: Kernausbeute	%			(X)				
Glasigkeit	Bon.1-9	(X)						
Wasseraufnahme NIR	ml	(X)						
Sortierung < 2,2 mm	%		X	(X)				
Sortierung > 2,2 mm	%		X	(X)				
Sortierung > 2,5 mm	%		X	(X)				
Sortierung > 2,8 mm	%		X					
Erntefeuchte	%							X
Farbe								X
Rohprotein XP	g/kg							(X)
Rohfaser XF	g/kg							(X)
N-freie Extraktstoffe XX	g/kg							(X)
Stärke XS	g/kg							(X)
Zucker XZ	g/kg							(X)
Rohfett XL	g/kg							(X)
Rohasche XA	g/kg							(X)

 $Tabelle\ 74:\ Geplante\ Bonituren\ und\ Messungen\ f\"{u}r\ das\ dritte\ Projektjahr\ 2023\ bei\ Mais.\ (X)=Bonitur/Messung\ erfolgt\ nach\ Bedarf\ /\ bei\ Auftreten$

		-	ren und Messungen 023
Parameter	Einheit	Silomais	Körnermais
Reifegruppe auf Sortenebene	1/2/3/4	X	X
Blattabreife	Bon.1-9		X
Wuchshöhe	cm	X	X
Jugendentwicklung	Bon.1-9	X	X
Kolbenblüte	MMTT	(X)	(X)
Gebrochene Pflanzen	Zahl/Parzelle	(X)	(X)

		Geplante Boniture	
Parameter	Einheit	Silomais	Körnermais
Lagerung	Bon.1-9		(X)
Istpflanzenzahl	Zahl/Parzelle	X	X
Zünslerbruch	Zahl/Parzelle		(X)
Beulenbrand	Zahl/Parzelle		(X)
Stängel- und Kolbenfäule (Fusarium)	Bon.1-9		(X)
Helminthosporium	Bon.1-9		(X)
Gesamteindruck	Bon.1-9	(X)	(X)
Korntyp	Bon.1-5		(X)
Kolbenansatzhöhe	cm		(X)
Lieschenöffnung	Bon.1-9		(X)
Befruchtung	Bon.1-9		(X)
Maisertrag (14% H2O)	dt/ha		X
Erntefeuchte	%		X
Trockenmasseertrag (Silomais)	dt/ha	X	
Trockensubstanz in der Grünmasse (Silomais)	%	X	
Zuckergehalt	g/kg	(X)	
Rohproteingehalt (Silomais)	g/kg	(X)	
Stärkegehalt (Silomais)	g/kg	X	
Rohfaser (Silomais)	g/kg	(X)	
enzym-lösliche organische Substanz (Silomais)	g/kg	(X)	
Energie (Silomais)	MJ	(X)	
neutrale Detergentienfaser (Silomais)	g/kg	(X)	
Lignin (Silomais)	g/kg	(X)	

 $Tabelle\ 75:\ Geplante\ Bonituren\ und\ Messungen\ f\"ur\ das\ dritte\ Projektjahr\ 2023\ bei\ den\ \"Ol-\ und\ Eiweißpflanzen.\ (X)=Bonitur/Messung\ erfolgt\ nach\ Bedarf\ /\ bei\ Auftreten.$

		ı		nte Bo essung			i
Parameter	Einheit	Sojabohne	Raps	Sonnenblume	Ölkürbis	Ackerbohne	Körnererbse
Reifegruppe	"0", "00", "000/0000"	X					
Sortentyp	H=Hybridsorte, F=freiabblühende Sorte		X		X		
Blühbeginn	Tage ab 1. Jänner		X	X		X	X
Ist-Fruchtzahl	n				X		
Pflanzen/Parzelle	n						(X)
Anzahl kleiner Früchte	n				X		
Jugendentwicklung (Herbstentwicklung)	Bon.1-9		X				
Schossintensität (Frühjahrsentwicklung)	Bon.1-9		X				
Jugendentwicklung	Bon.1-9	X		X	X	X	X
Wuchshöhe	cm	X	X	X		X	X
Reifebonitur (Streuversuche)	Bon.1-9			X			
Reifebonitur	Bon.1-9					X	
Reifebonitur früh	Bon.1-9		X				X
Reifebonitur spät	Bon.1-9		X				X
Reifebonitur Datum 1	Bon.1-9	X			X		
Reifebonitur Datum 2	Bon.1-9	X			X		
Tage bis Reife	n	(X)					
Blattabreife	Bon.1-9	X					
taube Spitzen			X				
Mängel vor Winter	Bon.1-9		(X)				
Mängel nach Winter	Bon.1-9		(X)				
Gesamteindruck	Bon.1-9	X				X	
Mängel nach Aufgang	Bon.1-9	(X)		(X)			
Auswinterung (Winterschaden, Winterschene)	Bon.1-9					(X)	
Lagerung	Bon.1-9			X		X	(X)
Lagerung früh	Bon.1-9		(X)				
Lagerung spät	Bon.1-9		(X)				
Lagerung 1 (BBCH 70-75)	Bon.1-9	(X)					
Lagerung 2 (vor Ernte)	Bon.1-9	(X)					
Kornausfall	Bon.1-9	(X)					
Hülsenansatzhöhe	cm	(X)					
Stängelknicken	Bon.1-9			(X)			
Broken Head	Bon.1-9			(X)			

				nte Bo essunş		en und 123	I
Parameter	Einheit	Sojabohne	Raps	Sonnenblume	Ölkürbis	Ackerbohne	Körnererbse
Phoma	Bon.1-9		(X)				
Alternaria	Bon.1-9		(X)				
Verticillium	Bon.1-9		(X)				
Spinnmilbe Tetranychidae	Bon.1-9	(X)					
Sclerotinia	Bon.1-9	(X)	(X)				
Virosen	Bon.1-9				(X)		
Blattnekrosen	Bon.1-9				(X)		
Rostbefall	Bon.1-9					(X)	
Schokoladenfleckenkrankheit Botrytis	Bon.1-9					(X)	
Anzahl fauler Früchte bei Ernte	n				(X)		
Relativer Anteil fauler Früchte bei Ernte	%				(X)		
Kornertrag (13% Restfeuchtigkeit)	dt/ha	X					
Kornertrag	dt/ha		X	X	X	X	X
Erntefeuchte	%	(X)	X	X	X	(X)	X
Tausendkorngewicht	g TM	(X)			(X)	(X)	
Rohproteingehalt	%	(X)	(X)			(X)	X
Ölgehalt	%	(X)	(X)	(X)	(X)		

Tabelle 76: Geplante Bonituren und Messungen für das dritte Projektjahr 2023 bei weiteren Öl- und Eiweißpflanzen. (X) = Bonitur/Messung erfolgt nach Bedarf / bei Auftreten.

		Geplante Boniture	ituren und Messungen 2023		
Parameter	Einheit	Weiße Lupine	Käfer- und Gartenbohne		
Jugendentwicklung	Bon.1-9		X		
Reifebonitur	Bon.1-9		(X)		
Lagerung	Bon.1-9		(X)		
Kornertrag	dt/ha	X	X		

 $Tabelle\ 77:\ Geplante\ Bonituren\ und\ Messungen\ f\"{u}r\ das\ dritte\ Projektjahr\ 2023\ bei\ Kartoffel.\ (X)=Bonitur/Messung\ erfolgt\ nach\ Bedarf\ /\ bei\ Auftreten.$

Test	Parameter	Einheit	Geplante Bonituren und Messungen 2023
N 1	Nematoden Test I		X
Nematoden Test	Nematoden Test II		X
Test	Nematoden Test III		X
	Knollen Anbau	Bon. 1-9	X
	Form Nr	Bon. 1-9	X
	Form		X
	Augen Nr	Bon. 1-9	X
Knollenbeschreibung	Augen		X
Aufarbeitung	Größe Nr	Bon. 1-9	X
Einzelstauden zu 8er	Größe		X
	Schalenfarbe		X
	Stärke	%	X
	Anmerkung		X
	Klonen Anbau	Bon. 1-9	X
NL	Knollen/Glashaus	n	X
Feld Bereinigung 8er	Bemerkung		X
	Knollenform 8er		X
	Formschönheit 8er	Bon. 1-9	X
	Größe 8er	Bon. 1-9	X
	Ansatz 8er	Bon. 1-9	X
	Sortierung 8er	Bon. 1-9	X
Knollenbeschreibung	Schale 8er	Bon. 1-9	X
am Feld bei Ernte	Schalenfarbe 8er	Bon. 1-9	X
	Augen 8er	Bon. 1-9	X
	Fleischfarbe 8er	Bon. 1-9	X
	Partie 8er	Bon. 1-9	X
	Knollenbeschreibung Bemerkung 8er		X
	KN Vermehrung		X
Knollenanbau	MM		X
Kilonenanoau	MN		X
	Stärke2	%	X
	Aufgang	Bon. 1-9	X
	Entwicklung	Bon. 1-9	X
	Fehlstellen	Bon. 1-9	X
Feldbonitur	MO Stk.	n	X
r Giabonital	BR Stk.	n	X
	Fadenkeimer Stk.	n	X
	Erwinia Stk.	n	X
	RHI Stk.	n	X

Test	Parameter	Einheit	Geplante Bonituren und Messungen 2023
	Phytophthora 1	Bon. 1-9	X
	Alternaria 1	Bon. 1-9	X
	Staudentyp		X
	Staudentyp Note	Bon. 1-9	X
	Staudenhöhe	Bon. 1-9	X
	Stängelwuchs		X
	Stängelfarbe	Bon. 1-9	X
	Standfestigkeit	Bon. 1-9	X
	Blattgröße		X
	Blattfarbe		X
	Blütenzahl	Bon. 1-9	X
	Blütenfarbe		X
	Beerenansatz	ja/nein	X
	Stolbur	n	X
	Reife	Bon. 1-9	X
	Bemerkung Feldbonitur		X
	Knollengröße	Bon. 1-9	X
Sommer-	Ansatz	Bon. 1-9	X
knollenbonitur	Sortierung reg.	Bon. 1-9	X
	Bemerkung Sommerknollenbonitur		X
	Knollenform		X
	Formschönheit	Bon. 1-9	X
	Knollengröße2	Bon. 1-9	X
	Sortierung	Bon. 1-9	X
	Schalenfarbe2		X
	Schalenbeschaffenheit	Bon. 1-9	X
	Augenlage	Bon. 1-9	X
	Schorf	Bon. 1-9	X
Knollenbonitur	Silberschorf	Bon. 1-9	X
	Rhizoctonia	Bon. 1-9	X
	Durchwuchs	Bon. 1-9	X
	Wachstumsrisse	Bon. 1-9	X
	Partie-Eindruck	Bon. 1-9	X
	Fleischfarbe	Bon. 1-9	X
	Innenfehler		X
	Fäulnis	Bon. 1-9	X
	Bemerkung Knollenbonitur		X
	Kochtyp	A,B,C	X
	Fleischfarbe2	Bon. 1-9	X
Speise-Chips-	Graugrüne Beifärbung	Bon. 1-9	X
Fritesprüfung	Farbreinheit	Bon. 1-9	X
	Zerkochen	Bon. 1-9	X

Test	Parameter	Einheit	Geplante Bonituren und Messungen 2023
	Konsistenz	Bon. 1-9	X
	Struktur	Bon. 1-9	X
	Feuchtigkeit	Bon. 1-9	X
	Geschmack	Bon. 1-9	X
	Verfärbung	Bon. 1-9	X
	Frites vorgeb.	Bon. 1-9	X
	Frites ausgeb.	Bon. 1-9	X
	F&F		X
	Chips	Bon. 1-9	X
	ACA Gehalt		X
	Rohbreiverfärbung		X
	Bemerkung Speiseprüfung		X
Ertrag	Knollen Anzahl	n	X
	Parzellenertrag	kg	X
	Rel. Ertrag	%	X
	Ertrag	t/ha	X
	Staudengewicht pro Wiederholung	kg	X
	Stärke	%	X
Stärke	Stärkeertrag	t/ha	X
	Rel. Stärkeertrag	%	X
	Knollen	n	X
Virustestung	BR positiv	n	X
	BR %	%	X
	Y positiv	n	X
	Y %	%	X
	A positiv	n	X
	A %	%	X
	M positiv	n	X
	M %	%	X
	X positiv	n	X
	X %	%	X
	S positiv	n	X
	S %	%	X
Krebs- und Nematodenprüfung	Krebsprüfung-Datum	Datum	X
	D1 Pathotyp resistent/anfällig		X
	Nematodenprüfung Datum	Datum	X
	Pathotyp		X
Keimbeschreibung	Größe8	Bon. 1-9	X
	Form9	Bon. 1-9	X
	Stärke der Anthocyanfärbung des Unterteils	Bon. 1-9	X

Test	Parameter	Einheit	Geplante Bonituren und Messungen 2023
	Blauanteil der Anthocyanfärbung des Unterteils	Bon. 1-9	X
	Behaarung des Unterteils	Bon. 1-9	X
	Größe des Oberteils im Verhältnis z. Unterteil	Bon. 1-9	X
	Wuchsform des Oberteils	Bon. 1-9	X
	Anthocyanfärbung des Oberteils	Bon. 1-9	X
	Behaarung des Oberteils	Bon. 1-9	X
	Anzahl der Wurzelhöcker	Bon. 1-9	X
	Länge der Seitentriebe	Bon. 1-9	X
Blatt- und Blütenbeschreibung	Umrissgröße	Bon. 1-9	X
	Offenheit	Bon. 1-9	X
	Vorhandensein von sekundären Blattfiedern	Bon. 1-9	X
	Grünfärbung	Bon. 1-9	X
	Anthocyanfärbung an der Mittelrippe der Oberseite	Bon. 1-9	X
	Zweites Paar Seitenblattfiedern: Breite im Verhältnis zur Länge	Bon. 1-9	X
	End- u. Seitenblattfiedern: Häufigkeit von Verwachsungen	Bon. 1-9	X
	Blütenknospe: Anthocyanfärbung	Bon. 1-9	X
	Pflanze: Häufigkeit von Blüten	Bon. 1-9	X
	Blütenstand: Größe	Bon. 1-9	X
	Blütenstand: Anthocyanfärbung am Stiel	Bon. 1-9	X
	Blütenkrone: Größe	Bon. 1-9	X
	Blütenkrone: Intensität der Anthocyanfärbung der Innenseite	Bon. 1-9	X
	Blütenkrone: Blauanteil der Anthocyanfärbung an der Innenseite		X
	Blütenkrone: Ausdehnung der Anthocyanfärbung an der Innenseite	Bon. 1-9	X

5 LITERATUR

- AGRARMARKT AUSTRIA (AMA) 2022. Getreideernte 2022: Österreich erntet mehr Weizen. Weltweiter Verbrauch über Produktion.
- AKTER, N. & RAFIQUL ISLAM, M. 2017. Heat stress effects and management in wheat. A review. *Agronomy for Sustainable Development*, 37, 37.
- BARNABÁS, B., JÄGER, K. & FEHÉR, A. 2007. The effect of drought and heat stress on reproductive processes in cereals. *Plant, Cell & Environment*, 31, 11-38.
- BOMERS, S., SEHR, E. M., ADAM, E., VON GEHREN, P., HANSEL-HOHL, K., PRAT, N. & RIBARITS, A. 2022. Towards Heat Tolerant Runner Bean (*Phaseolus coccineus* L.) by Utilizing Plant Genetic Resources. *Agronomy*, 12, 612.
- ELAD, Y. & PERTOT, I. 2014. Climate Change Impacts on Plant Pathogens and Plant Diseases. *Journal of Crop Improvement*, 28, 99-139.
- FAROOQ, M., BRAMLEY, H., PALTA, J. A. & SIDDIQUE, K. H. M. 2011. Heat Stress in Wheat during Reproductive and Grain-Filling Phases. *Critical Reviews in Plant Sciences*, 30, 491-507.
- FINLAY, K. W. & WILKONSON, G. N. 1963. The Analysis of Adaptation in a Plant-Breeding Programme. Australian Journal of Agricultural Research, 14, 742-754.
- FORMAYER, H., CLEMENTSCHITSCH, L., HOFSTÄTTER, M. & KROMP-KOLB, H. 2009. Vor Sicht Klima! Klimawandel in Österreich, regional betrachtet (Endbericht Global 200, Mai 2008). *BOKU-Met Report 16*.
- HASLMAYR, H.-P., BAUMGARTEN, A., SCHWARZ, M., HUBER, S., PROKOP, G., SEDY, K., KRAMMER, C., MURER, E., POCK, H., RODLAUER, C., SCHAUMBERGER, A., NADEEM, I. & FORMAYER, H. 2018. BEAT Bodenbedarf für die Ernährungssicherung in Österreich: Endbericht zum Forschungsprojekt Nr. 100975.
- IPCC 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, H.-O. PÖRTNER, D.C. ROBERTS, M. TIGNOR, E.S. POLOCZANSKA, K. MINTENBECK, A. ALEGRÍA, M. CRAIG, S. LANGSDORF, S. LÖSCHKE, V. MÖLLER, A. OKEM & RAMA, B. (eds.). Cambridge University Press. In Press
- LENTH, R. V. 2022. *emmeans: Estimated Marginal Means, aka Least-Squares Means*. https://CRAN.R-project.org/package=emmeans.
- LIN, C. S. & BINNS, M. R. 1988. A superiority measure of cultivar performance for cultivar x location data. *Canadian Journal of Plant Science*, 68, 193-198.
- RAINEY, K. M. & GRIFFITHS, P. D. 2005. Differential Response of Common Bean Genotypes to High Temperature. *Journal of the American Society for Horticultural Science jashs*, 130, 18-23.
- SINGH, B., KUKREJA, S. & GOUTAM, U. 2020. Impact of heat stress on potato (Solanum tuberosum L.): present scenario and future opportunities. *The Journal of Horticultural Science and Biotechnology*, 95, 407-424.
- STRAUSS, F., MOLTCHANOVA, E. & SCHMID, E. 2013. Drought Impacts on Crop Production in Austria. *American Journal of Climate Change*, 2, 1-11.
- TALUKDER, A. S. M. H. M., MCDONALD, G. K. & GILL, G. S. 2014. Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. *Field crops research*, 2014 v.160, pp. 54-63.
- UNITED NATIONS OFFICE FOR DISASTER RISK REDUCTION (UNDRR) 2020. The human cost of disasters: an overview of the last 20 years (2000-2019) Estados Unidos.
- VAN ROSSUM, B.-J. 2022. *statgenGxE: Genotype by Environment (GxE) Analysis*. https://biometris.github.io/statgenGxE/index.html, https://github.com/Biometris/statgenGxE/.
- VARGAS, Y., MAYOR-DURAN, V. M., BUENDIA, H. F., RUIZ-GUZMAN, H. & RAATZ, B. 2021. Physiological and genetic characterization of heat stress effects in a common bean RIL population. *PLoS One*, 16, e0249859.
- WORLD METEROLOGICAL ORGANISATION (WMO) 2021. State of the Global Climate 2020, Switzerland, ISBN 978-92-63-11264-4.
- WRICKE, G. 1962. Evaluation Method for Recording Ecological Differences in Field Trials. Z *Pflanzenzücht*, 47, 92-96.

6 TABELLENVERZEICHNIS

Tabelle 1: Anzahl der im zweiten Projektjahr (2022) für Parzellenversuche verwendeten Standorte (inkl. Anzahl der Versuche) je Kulturart, gruppiert in die vier Stufen der von den Züchter:innen bewerteten
Trockenstress-Intensität; 1 = hoch, 2 = mittel, 3 = niedrig, 4 = kein Trockenstress
Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen 20
Tabelle 3: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Gerste. Die Daten wurden pro
Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen21
• • • • • • • • • • • • • • • • • • • •
Tabelle 4: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Hafer. Die Daten wurden pro
Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen. 22
Tabelle 5: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Wintertriticale. Die Daten wurden
pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde
liegen
Tabelle 6: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Winterroggen. Die Daten wurden
pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde
liegen22
Tabelle 7: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Rispenhirse. Die Daten wurden
pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde
liegen23
Tabelle 8: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Sorghum. Die Daten wurden pro
Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen 23
Tabelle 9: Erhobene Bonituren und Messung im zweiten Projektjahr bei Mais. Die Daten wurden pro
Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen 23
Tabelle 10: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Sojabohne. Die Daten wurden
pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde
liegen
Tabelle 11: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Raps. Die Daten wurden pro
Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen26
Tabelle 12: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Sonnenblume. Die Daten
wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp
zugrunde liegen
Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen. 27
Tabelle 14: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Ackerbohne. Die Daten wurden
pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde
liegen. 27
Tabelle 15: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Körnererbse. Die Daten wurden
pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde
liegen28
Tabelle 16: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Weiße Lupine. Die Daten
wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp
zugrunde liegen
Tabelle 17: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Käfer- und Gartenbohnen. Die
Daten wurden pro Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp
zugrunde liegen
Tabelle 18: Erhobene Bonituren und Messungen im zweiten Projektjahr bei Kartoffel. Die Daten wurden pro
Genotyp und Versuch berechnet. Es können mehrere Wiederholungen pro Genotyp zugrunde liegen 29
Tabelle 19: Übersicht der verschiedenen Umwelten im Genotyp x Umwelt Interaktionsversuches vom
Winterweizen. Trockenstress-Intensität; 1 = hoch, 2 = mittel, 3 = niedrig, 4 = kein Trockenstress37
Tabelle 20: Ausgewählte erhobene Parameter vielversprechender Sommerweizen-Zuchtlinien im zweiten
Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter
zur Feststellung ihres Verhaltens in der Umwelt
Tabelle 21: Ausgewählte erhobene Parameter vielversprechender Winterweizen-Zuchtlinien im zweiten
Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf den
nächsten Seiten
11401150011 5011011

TABELLENVERZEICHNIS

Tabelle 22: Ausgewählte bonitierte Parameter vielversprechender Winterweizen-Zuchtlinien im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf den nächsten Seiten.
Tabelle 23: Ausgewählte erhobene Parameter vielversprechender Sommergerste-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf der nächsten
Seite
Seite55
Tabelle 25: Ausgewählte erhobene Parameter vielversprechender Zuchtlinien der zweizeiligen Wintergerste im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf der nächsten Seite.
Tabelle 26: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien der zweizeiligen Wintergerste
im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf der nächsten Seite.
Tabelle 27: Ausgewählte erhobene Parameter vielversprechender Zuchtlinien der mehrzeiligen Wintergerste
im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf den nächsten Seiten. 68
Tabelle 28: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien der mehrzeiligen Wintergerste
im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf
den nächsten Seiten
Tabelle 29: Ausgewählte bonitierte Parameter vielversprechender Sommerhafer-Zuchtlinien im zweiten
Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter zur Feststellung ihres Verhaltens in der Umwelt
Tabelle 30: Ausgewählte bonitierte Parameter vielversprechender Wintertriticale-Zuchtlinien im zweiten
Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter
zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf der nächsten Seite76
Tabelle 31: Ausgewählte bonitierte Parameter vielversprechender Winterroggen-Zuchtlinien im zweiten
Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter
zur Feststellung ihres Verhaltens in der Umwelt
Tabelle 32: Ausgewählte bonitierte Parameter vielversprechender Rispenhirse-Zuchtlinien im zweiten
Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter zur Feststellung ihres Verhaltens in der Umwelt
Tabelle 33: Ausgewählte bonitierte Parameter vielversprechender Körnersorghum-Zuchtlinien im zweiten
Projektjahr zur Quantifizierung und Ermittlung der Qualitäten
Tabelle 34: Ausgewählte bonitierte Parameter vielversprechender Körnersorghum-Zuchtlinien im zweiten
Projektjahr zur Feststellung ihres Verhaltens in der Umwelt83
Tabelle 35: Ausgewählte bonitierte Parameter vielversprechender Silomais-Zuchtlinien im zweiten
Projektjahr zur Quantifizierung und Ermittlung der Qualitäten
Tabelle 36: Ausgewählte bonitierte Parameter vielversprechender Silomais-Zuchtlinien im zweiten
Projektjahr zur Feststellung ihres Verhaltens in der Umwelt
Tabelle 37: Ausgewählte bonitierte Parameter vielversprechender Körnermais-Zuchtlinien der Reifegruppe früh/mittelfrüh im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung
der Tabelle auf den nächsten Seiten
Tabelle 38: Ausgewählte bonitierte Parameter vielversprechender Körnermais-Zuchtlinien der Reifegruppe
früh/mittelfrüh im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der
Tabelle auf den nächsten Seiten.
Tabelle 39: Ausgewählte bonitierte Parameter vielversprechender Körnermais-Zuchtlinien der Reifegruppe
mittelspät/spät im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Die Tabelle
wird auf den nächsten Seiten fortgesetzt
Tabelle 40: Ausgewählte bonitierte Parameter vielversprechender Körnermais-Zuchtlinien der Reifegruppe
spät/mittelspät im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt
Tabelle 41: Ausgewählte erhobene Parameter der Sojabohnen Sorte <i>Achillea</i> (Reifegruppe 000) nach
Behandlung mit in Österreich marktbedeutenden Beimpfungspräparaten unterschiedlicher Preisklassen im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten
Tabelle 42: Ausgewählte erhobene Parameter vielversprechender Sojabohne-Zuchtlinien der Reifegruppe I
und 0 im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der
Tabelle auf der nächsten Seite

TABELLENVERZEICHNIS

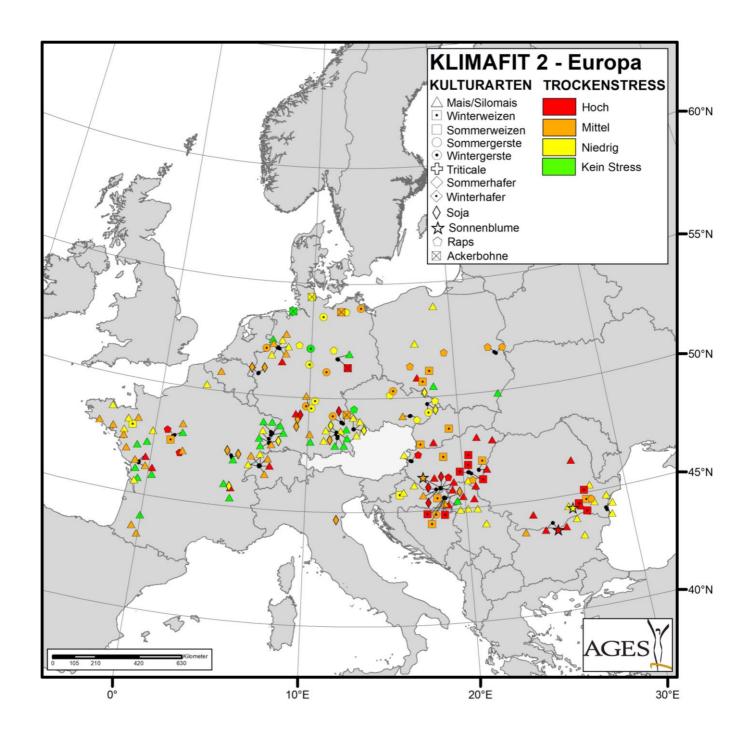
Tabelle 43: Ausgewählte bonitierte Parameter vielversprechender Sojabohne-Zuchtlinien der Reifegruppe I
und 0 im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt
Tabelle 44: Ausgewählte erhobene Parameter vielversprechender Sojabohne-Zuchtlinien der Reifegruppe 00
im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf
den nächsten Seiten
Tabelle 45: Ausgewählte bonitierte Parameter vielversprechender Sojabohne-Zuchtlinien der Reifegruppe 00
im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf
den nächsten Seiten
Tabelle 46: Ausgewählte erhobene Parameter vielversprechender Sojabohne-Zuchtlinien der Reifegruppe
000 und 0000 im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung
der Tabelle auf den nächsten Seiten.
Tabelle 47: Ausgewählte bonitierte Parameter vielversprechender Sojabohne-Zuchtlinien der Reifegruppe
000 und 0000 im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der
Tabelle auf den nächsten Seiten
Tabelle 48: Ausgewählte erhobene Parameter vielversprechender Linienraps-Zuchtlinien im zweiten
Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf den
nächsten Seiten
Tabelle 49: Ausgewählte bonitierte Parameter vielversprechender Linienraps-Zuchtlinien im zweiten
Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf den nächsten
Seiten
Tabelle 50: Ausgewählte erhobene Parameter vielversprechender Hybridraps-Zuchtlinien im zweiten
Projektjahr zur Quantifizierung und Ermittlung der Qualitäten. Fortsetzung der Tabelle auf den
nächsten Seiten
Tabelle 51: Ausgewählte bonitierte Parameter vielversprechender Hybridraps-Zuchtlinien im zweiten
Projektjahr zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf den nächsten
Seiten
Tabelle 52: Ausgewählte bonitierte Parameter vielversprechender Sonnenblumen-Zuchtlinien im zweiten
Projektjahr zur Quantifizierung und Ermittlung der Qualitäten
Tabelle 53: Ausgewählte bonitierte Parameter vielversprechender Sonnenblumen-Zuchtlinien im zweiten
Projektjahr zur Feststellung ihres Verhaltens in der Umwelt
Tabelle 54: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien des Hybridsorten-Ölkürbisses
im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten
Tabelle 55: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien des Hybridsorten-Ölkürbisses
im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt
Tabelle 56: Ausgewählte erhobene Parameter der vielversprechendsten Zuchtlinie des frei abblühenden
Ölkürbisses im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten174
Tabelle 57: Ausgewählte erhobene Parameter der vielversprechendsten Zuchtlinie des frei abblühenden
Ölkürbisses im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt174
Tabelle 58: Ausgewählte bonitierte Parameter vielversprechender Sommerackerbohnen-Zuchtlinien im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene
Parameter zur Feststellung ihres Verhaltens in der Umwelt. Fortsetzung der Tabelle auf den nächsten
Seiten
Tabelle 59: Ausgewählte bonitierte Parameter vielversprechender Winterackerbohnen-Zuchtlinien im
zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene
Parameter zur Feststellung ihres Verhaltens in der Umwelt
Tabelle 60: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien der Körnererbse im zweiten
Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene Parameter
zur Feststellung ihres Verhaltens in der Umwelt
Tabelle 61: Ausgewählte erhobene Parameter der Weißen Lupine Sorte Frieda nach Behandlung mit in
Österreich marktbedeutenden Beimpfungspräparaten unterschiedlicher Preisklassen im zweiten
Projektjahr zur Quantifizierung und Ermittlung der Qualitäten
Tabelle 62: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien der Käfer- und Gartenbohnen
im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten, sowie ausgewählte erhobene
Parameter zur Feststellung ihres Verhaltens in der Umwelt
Tabelle 63: Ausgewählte erhobene Parameter vielversprechender Zuchtlinien der Kartoffel im
konventionelle Anbau im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten 190
Tabelle 64: Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien der Kartoffel im
konventionellen Anhau im zweiten Projektiahr zur Feststellung ihres Verhaltens in der Umwelt

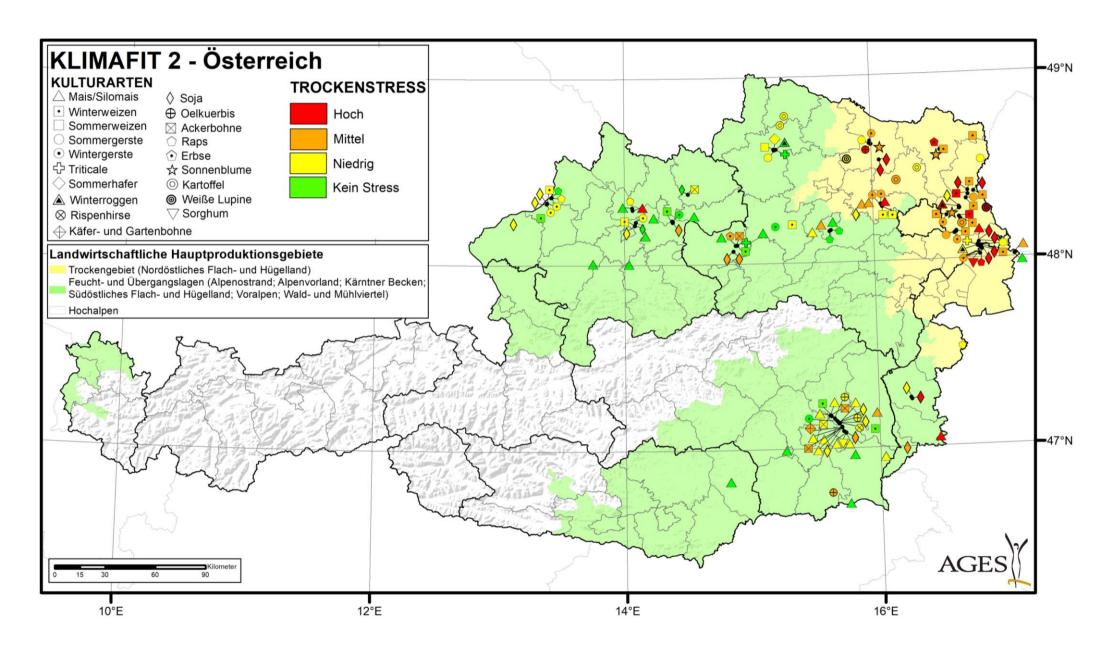
TABELLENVERZEICHNIS

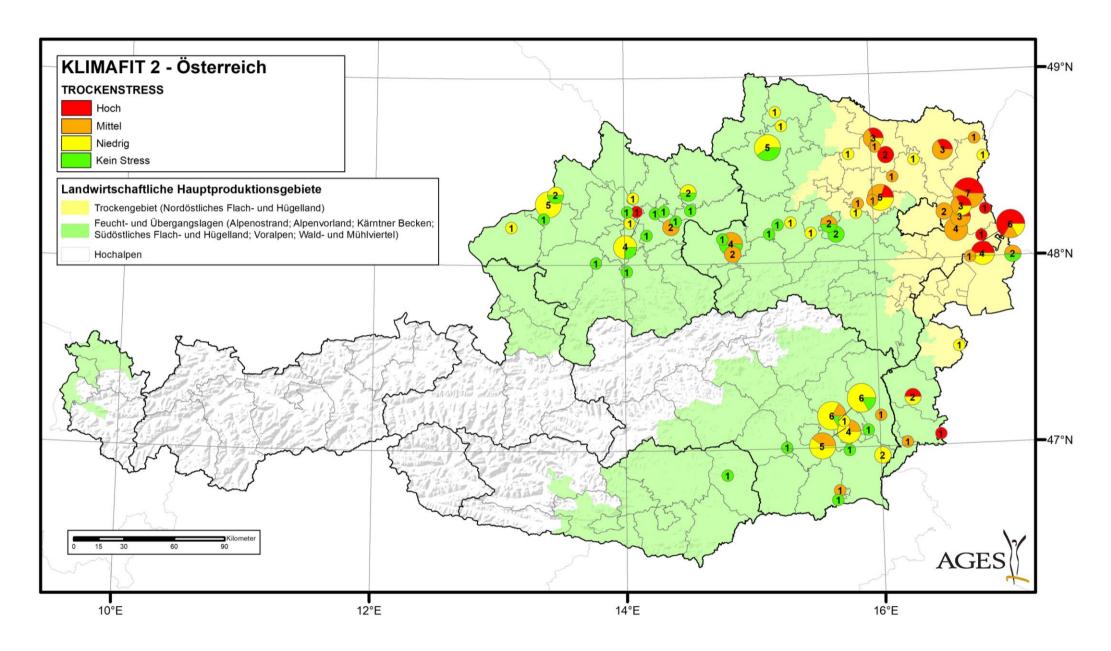
Tabelle 65: Ausgewählte erhobene Parameter vielversprechender Zuchtlinien der Kartoffel für den	
Biolandbau im zweiten Projektjahr zur Quantifizierung und Ermittlung der Qualitäten	193
Tabelle 66 Ausgewählte bonitierte Parameter vielversprechender Zuchtlinien der Kartoffel für den	
Biolandbau im zweiten Projektjahr zur Feststellung ihres Verhaltens in der Umwelt	194
Tabelle 67: Ergebnis der Finlay-Wilkinson-Analyse.	199
Tabelle 68: Ergebnis der Berechnung der Mega-Umwelten.	200
Tabelle 69: Ergebnis der Cultivar-Superiority Measure Berechnung.	201
Tabelle 70: Ergebnis der Static Stability Coefficient Berechnung.	201
Tabelle 71: Ergebnis der Wricke's Ecovalence Stability Coefficient Berechnung.	202
Tabelle 72: Anzahl der im Laufe des zweiten Projektjahres 2022 von KLIMAFIT 2 neu angemeldeten	
Wertprüfungs-Kandidaten in Österreich. In Klammern steht die zusätzliche Anzahl der angemeldet	en
Bio-Sorten.	205
Tabelle 73: Geplante Bonituren und Messungen für das dritte Projektjahr 2023 bei Getreide. (X) =	
Bonitur/Messung erfolgt nach Bedarf / bei Auftreten.	206
Tabelle 74: Geplante Bonituren und Messungen für das dritte Projektjahr 2023 bei Mais. (X) =	
Bonitur/Messung erfolgt nach Bedarf / bei Auftreten	207
Tabelle 75: Geplante Bonituren und Messungen für das dritte Projektjahr 2023 bei den Öl- und	
Eiweißpflanzen. (X) = Bonitur/Messung erfolgt nach Bedarf / bei Auftreten	209
Tabelle 76: Geplante Bonituren und Messungen für das dritte Projektjahr 2023 bei weiteren Öl- und	
Eiweißpflanzen. (X) = Bonitur/Messung erfolgt nach Bedarf / bei Auftreten	210
Tabelle 77: Geplante Bonituren und Messungen für das dritte Projektjahr 2023 bei Kartoffel. (X) =	
Bonitur/Messung erfolgt nach Bedarf / bei Auftreten.	211

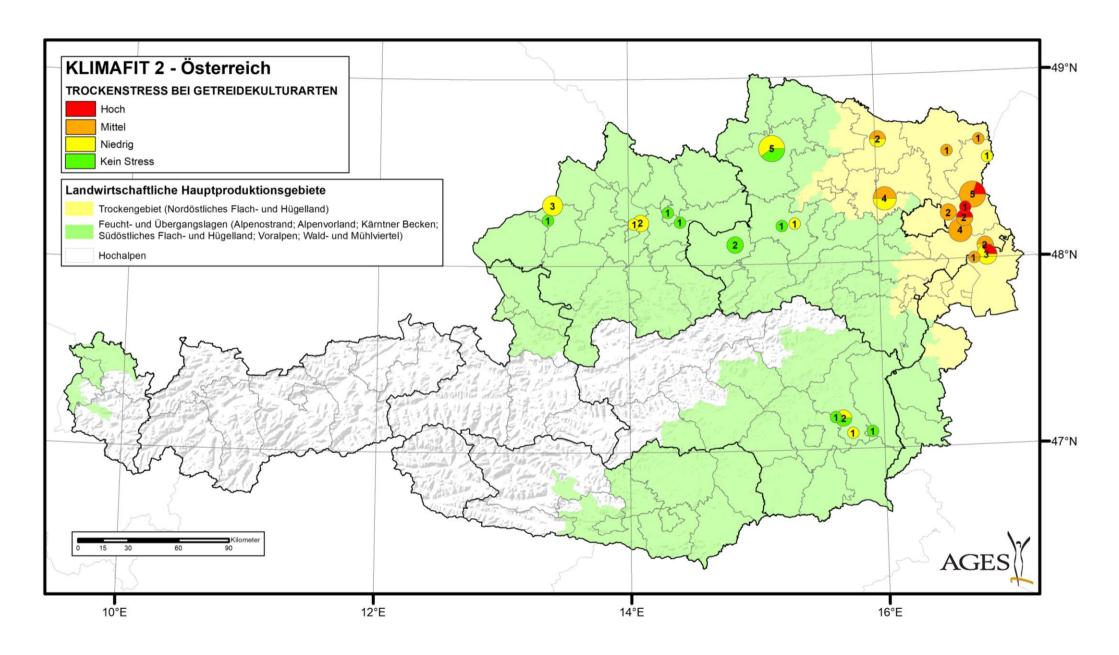
7 ABBILDUNGSVERZEICHNIS

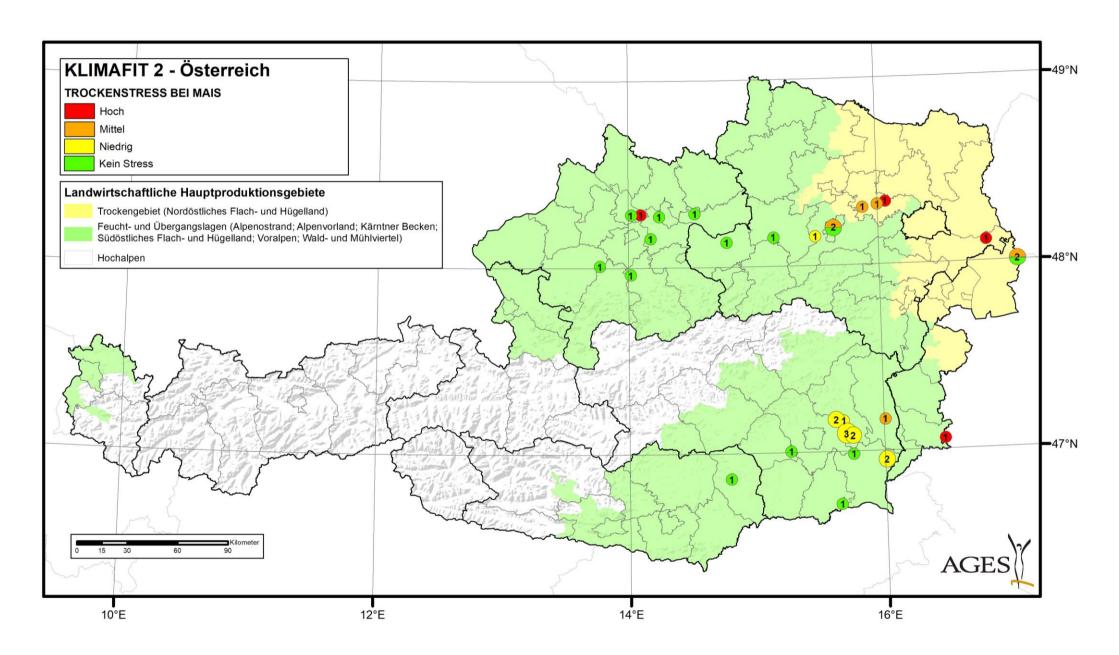
Abbildung 1: Abweichung des Jahresmittelwerts der Lufttemperaturen im Jahr 2022 vom vieljährigen Mittel 1991-2020, erstellt im Rahmen des Klimamonitorings der ZAMG, basierend auf den Messdaten aus
dem Klimastationsnetz.
Abbildung 2: Abweichung der Jahressumme des Niederschlags im Jahr 2022 vom vieljährigen Mittel 1991-2020 (entspricht 100 %), erstellt im Rahmen des Klimamonitorings der ZAMG, basierend auf den
Messdaten aus dem Klimastationsnetz.
Abbildung 3: Übersicht über die 198 Standorte im europäischen Ausland an denen im zweiten Projektjahr (2022) Parzellenversuche der unterschiedlichen Kulturarten angelegt wurden. Die jeweilige Farbe des Symbols gibt die von den Züchter:innen bewertete Trockenstress-Intensität, welche am jeweiligen Standort auf die Pflanzen einwirkte, wieder. Eine höhere Auflösung der Karte findet sich im Anhang. 13
Abbildung 4: Übersicht über die 142 Standorte in Österreich, an denen im zweiten Projektjahr (2022) Parzellenversuche der unterschiedlichen Kulturarten angelegt wurden. Die jeweilige Farbe des Symbols
gibt die von den Züchter:innen bewertete Trockenstress-Intensität, welche am jeweiligen Standort auf die Pflanzen einwirkte, wieder. Eine höhere Auflösung der Karte findet sich im Anhang
Abbildung 5: Verteilung der einzelnen österreichischen Versuchsstandorte des zweiten Projektjahres 2022 und der dazugehörigen Trockenstress-Intensität der Standorte. Eine höhere Auflösung der Karte findet sich im Anhang
Abbildung 6: Versuchsplan des im zweiten Projektjahr 2022 angelegten Soja-Feldversuches
Abbildung 7: Versuchsplan des im ersten Projektjahr 2021 geernteten Winterweizen-Feldversuches3:
Abbildung 8: Versuchsplan des im zweiten Projektjahr 2022 geernteten Winterweizen-Feldversuches30
Abbildung 9: Verteilung der einzelnen Versuchsstandorte des zweiten Projektjahres (2022) und der dazugehörigen Trockenstress-Intensität der Standorte an denen Getreidekulturarten angebaut wurden.
Eine höhere Auflösung der Karte findet sich im Anhang4
Abbildung 10: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche in Edelhof der zehn im zweiten Projektjahr ertragreichsten Sommerweizen-Zuchtlinien und der Standardsorten KWS Expectum KWS Mistral und WPB Troy
Abbildung 11: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche mit Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn ertragreichsten Winterweizen-
Zuchtlinien des zweiten Projektjahres und der Standardsorten Activus, Aurelius und Chevignon4
Abbildung 12: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche mit Trockenstress (gelb)
sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichster Zuchtlinien der Sommergerste und der Standardsorten <i>Amidala, Avus, Skyway</i> und <i>Leandra.</i>
Abbildung 13: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche mit Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichster Zuchtlinien der zweizeiligen Wintergerste und der Standardsorten <i>Bordeaux</i> , <i>LG Campus</i> und <i>SU Laubella</i>
Abbildung 14: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche mit Trockenstress (gelb)
sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichster Zuchtlinien der mehrzeiligen Wintergerste und der Standardsorten Adalina, Journey, KWS Meridian und SU Jule.
Abbildung 15: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche ohne Trockenstress (grau) der acht im zweiten Projektjahr ertragreichsten Zuchtlinien des Sommerhafers und der Standardsorten
Enjoy und Platin
Abbildung 16: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche mit Trockenstress (gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichster Wintertriticale-Zuchtlinien und der Standardsorten <i>Brehat, Claudius, RGT Flickflac</i> und <i>Rivolt7</i> :
Abbildung 17: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche mit Trockenstress (gelb)
sowie in Bezug auf Versuche ohne Trockenstress (grau) der fünf im zweiten Projektjahr ertragreichsten Zuchtlinien des Winterroggens und der Standardsorten KWS Jethro, KWS Receptor und KWS Tayo78
Abbildung 18: Adjustierter, mittlerer relativer Kornertrag in Bezug auf Versuche ohne Trockenstress (grau) der acht im zweiten Projektjahr ertragreichsten Zuchtlinien der Rispenhirse und der Standardsorten
Kornberger und Lisa.
Abbildung 19: Adjustierter, mittlerer relativer Kornertrag in Bezug auf den Versuch unter Trockenstress (gelb) der acht im zweiten Projektjahr ertragreichsten Zuchtlinien des Körnersorghums und der
Standardsorten <i>Armorik</i> und <i>Kalatur</i>


ABBILDUNGSVERZEICHNIS


Abbildung 20: Verteilung der einzelnen Versuchsstandorte des zweiten Projektjahres (2022) und der dazugehörigen Trockenstress-Intensität der Standorte an denen Mais angebaut wurde. Eine höhere
Auflösung der Karte findet sich im Anhang84
Abbildung 21: Sortenkreuz des Silomais ohne Trockenstressbedingungen. Abgebildet sind die adjustierten
Trockenmasseerträge relativ zu dem Standardsortenmittel auf der Y-Achse, und die Differenzen der
adjustierten Trockensubstanz in der Grünmasse relativ zu dem Standardsortenmittel auf der X-Achse.86
Abbildung 22: Sortenkreuz des Silomais unter Trockenstressbedingungen. Abgebildet sind die adjustierten
Trockenmasseerträge relativ zu dem Standardsortenmittel auf der Y-Achse, und die Differenzen der
adjustierten Trockensubstanz in der Grünmasse relativ zu dem Standardsortenmittel auf der X-Achse.86
Abbildung 23: Sortenkreuz der Reifegruppe früh/mittelfrüh unter Trockenstress-Bedingungen. Abgebildet
sind die adjustierten Kornerträge relativ zu dem Standardsortenmittel auf der Y-Achse, und die
Differenzen der adjustierten Kornfeuchtigkeiten relativ zu dem Standardsortenmittel auf der X-Achse.
Abbildung 24: Sortenkreuz der Reifegruppe früh/mittelfrüh für Versuche ohne Trockenstress. Abgebildet
sind die adjustierten Kornerträge relativ zu dem Standardsortenmittel auf der Y-Achse, und die
Differenzen der adjustierten Kornfeuchtigkeiten relativ zu dem Standardsortenmittel auf der X-Achse.
89
Abbildung 25: Sortenkreuz der Reifegruppe mittelspät/spät unter Trockenstress-Bedingungen. Abgebildet
sind die adjustierten Kornerträge relativ zu dem Standardsortenmittel auf der Y-Achse, und die
Differenzen der adjustierten Kornfeuchtigkeiten relativ zu dem Standardsortenmittel auf der X-Achse.
Abbildurg 26. Sartoskraug der Beife amung mittelenät/snät für Versuche ehre Treekenstrage. Abschildet
Abbildung 26: Sortenkreuz der Reifegruppe mittelspät/spät für Versuche ohne Trockenstress. Abgebildet sind die adjustierten Kornerträge relativ zu dem Standardsortenmittel auf der Y-Achse, und die
Differenzen der adjustierten Kornfeuchtigkeiten relativ zu dem Standardsortenmittel auf der X-Achse.
ů
Abbildung 27: Verteilung der einzelnen Versuchsstandorte des zweiten Projektjahres (2022) und der
dazugehörigen Trockenstress-Intensität der Standorte an denen Öl- & Eiweißpflanzen angebaut wurden.
Eine höhere Auflösung der Karte findet sich im Anhang
Abbildung 28: Ertrag der Sojabohnensorte <i>Achillea</i> (Reifegruppe 000) an zwei verschiedenen Standorten
nach Behandlung mit in Österreich marktbedeutenden Beimpfungspräparaten unterschiedlicher
Preisklassen
Abbildung 29: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb)
sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten
Zuchtlinien der Sojabohne der Reifegruppe I und 0 und der Standardsorten Angelica, Artesia, Ezra und
DH4173
Abbildung 30: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter niedrigem Trockenstress
(gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr
ertragreichsten Zuchtlinien der Sojabohne der Reifegruppe 00 und der Standardsorten Angelica,
Atacama, RGT Satelia und Sonali
Abbildung 31: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter niedrigem Trockenstress
(gelb) sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr
ertragreichsten Zuchtlinien der Sojabohne der Reifegruppe 000 und 0000 und der Standardsorten
Acardia, Adelfia, Abaca, und Aurelina
Abbildung 32: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb)
sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten
Linienraps-Zuchtlinien und der drei Standardsorten Harry, Iggy und Randy
Abbildung 33: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb)
sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten
Hybridraps-Zuchtlinien und der Standardsorten Architect, Artemis, Astana und Ludger160
Abbildung 34: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb)
sowie in Bezug auf Versuche ohne Trockenstress (grau) der fünf im zweiten Projektjahr ertragreichsten
Zuchtlinien der Sonnenblume und der Standardsorten P64LE136 und SY Bacardi CLP
Abbildung 35: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb)
sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten
Zuchtlinien des Hybridsorten-Ölkürbisses und der Standardsorten GL Rudolf und GL Rustikal 171
Abbildung 36: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb)
sowie in Bezug auf Versuche ohne Trockenstress (grau) der im zweiten Projektjahr ertragreichsten


ABBILDUNGSVERZEICHNIS


Zuchtlinie des frei abblühenden Ölkürbisses und der Standardsorten <i>GL Ruprecht</i> und <i>Gleisdorfer Ölkürbis</i>
Abbildung 37: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche unter Trockenstress (gelb)
sowie in Bezug auf Versuche ohne Trockenstress (grau) der zehn im zweiten Projektjahr ertragreichsten
Zuchtlinien der Sommerackerbohne und der Standardsorte <i>Alexia</i>
Abbildung 38: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche ohne Trockenstress (grau) der
zehn im zweiten Projektjahr ertragreichsten Zuchtlinien der Winterackerbohne und der zwei
Standardsorten <i>GL Alice</i> und <i>GL Arabella</i>
Abbildung 39: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche in Mistelbach (gelb) sowie in
Bezug auf Versuche in Gießhübl (grau) der sieben im zweiten Projektjahr ertragreichsten Zuchtlinien
der Körnererbse und der Standardsorten <i>Karacter</i> und <i>Tiberius</i>
Abbildung 40: Ertrag der Weißen Lupine Sorte Frieda in Grübern nach Behandlung mit in Österreich
marktbedeutenden Beimpfungspräparaten unterschiedlicher Preisklassen
Abbildung 41: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche ohne Trockenstress (grau) der
sieben im zweiten Projektjahr ertragreichsten Zuchtlinien der Käfer- und Gartenbohnen und der
Standardsorte Bonela
Abbildung 42: Verteilung der einzelnen Versuchsstandorte des zweiten Projektjahres (2022) und der
dazugehörigen Trockenstress-Intensität der Standorte an denen die Kartoffel angebaut wurde. Eine
höhere Auflösung der Karte findet sich im Anhang.
Abbildung 43: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche im Weinviertel (Naglern) (gelb)
sowie in Bezug auf Versuche im Waldviertel (Meires) (grau) der zehn im zweiten Projektjahr
ertragreichsten Kartoffel-Zuchtlinien im konventionellen Anbau und der Standardsorten Bionta,
Brooke, Agria, Erika, Marabel und Alonso189
Abbildung 44: Adjustierter, mittlerer relativer Ertrag in Bezug auf Versuche in Fuchsenbigl und
Untermallebarn (gelb), sowie in Bezug auf Versuche in Schwarzenau (grau) der fünf im zweiten
Projektjahr ertragreichsten Kartoffel-Zuchtlinien für den Biolandbau und der Standardsorten Agria,
Fenna, Bosco und Twister
Abbildung 45: Streudiagramme, die den beregneten (y-Achse) und unberegneten (x-Achse) Kornertrag in
dt/ha von Sojasorten und Sortenkandidaten der Reifegruppe 00 des Soja-Feldversuchs in Fuchsenbigl in
2022 darstellen
Abbildung 46: Streudiagramme, die den beregneten (y-Achse) und unberegneten (x-Achse) Kornertrag in
dt/ha von Winterweizen Sorten und Sortenkandidaten in Fuchsenbigl im Erntejahr 2021 (links) und im
Erntejahr 2022 (rechts) darstellen.
Abbildung 47: Boxplots, die in absteigender Reihenfolge den durchschnittlichen Ertrag in jeder der 40
verschiedenen Umwelten zeigen. 198
Abbildung 48: Ergebnisse des AMMI2 biplots


8 ANHANG

